📄 estimateprob.cpp
字号:
/*
This file is part of Orange.
Orange is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Orange is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Orange; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Authors: Janez Demsar, Blaz Zupan, 1996--2002
Contact: janez.demsar@fri.uni-lj.si
*/
#include "vars.hpp"
#include "contingency.hpp"
#include "examplegen.hpp"
#include "estimateprob.ppp"
#include "stat.hpp"
#include "random.hpp"
DEFINE_TOrangeVector_classDescription(PProbabilityEstimator, "TProbabilityEstimatorList", true, ORANGE_API)
DEFINE_TOrangeVector_classDescription(PConditionalProbabilityEstimator, "TConditionalProbabilityEstimatorList", true, ORANGE_API)
TProbabilityEstimator::TProbabilityEstimator(const bool &disc, const bool &cont)
: supportsDiscrete(disc),
supportsContinuous(cont)
{}
PDistribution TProbabilityEstimator::operator()() const
{ return PDistribution(); }
TConditionalProbabilityEstimator::TConditionalProbabilityEstimator(const bool &disc, const bool &cont)
: supportsDiscrete(disc),
supportsContinuous(cont)
{}
PContingency TConditionalProbabilityEstimator::operator()() const
{ return PContingency(); }
TProbabilityEstimator_FromDistribution::TProbabilityEstimator_FromDistribution(PDistribution af)
: TProbabilityEstimator(true, true),
probabilities(af)
{ /* We try to check if we support discrete/continuous attributes;
if we can't, we'll promise everything and blame the user for it
(he should have given us the distributions) */
if (probabilities) {
if (probabilities.is_derived_from(TDiscDistribution))
supportsContinuous = false;
else if (probabilities.is_derived_from(TContDistribution))
supportsDiscrete = false;
}
}
float TProbabilityEstimator_FromDistribution::operator()(const TValue &classVal) const
{ checkProperty(probabilities);
if (classVal.isSpecial())
raiseError("undefined attribute value");
/* This is a harmless shortcut to make things run faster in the most usual case */
if (classVal.varType == TValue::INTVAR) {
const TDiscDistribution *ddist = probabilities.AS(TDiscDistribution);
if (ddist)
return (*ddist)[classVal.intV];
// else, let probabilities->p do something or (more probably) report an error
}
return probabilities->p(classVal);
}
PDistribution TProbabilityEstimator_FromDistribution::operator()() const
{ return CLONE(TDistribution, probabilities);
}
PProbabilityEstimator TProbabilityEstimatorConstructor_relative::operator()(PDistribution frequencies, PDistribution, PExampleGenerator, const long &, const int &) const
{ TProbabilityEstimator_FromDistribution *pefd = mlnew TProbabilityEstimator_FromDistribution(CLONE(TDistribution, frequencies));
PProbabilityEstimator estimator = pefd;
pefd->probabilities->normalize();
return estimator;
}
TProbabilityEstimatorConstructor_Laplace::TProbabilityEstimatorConstructor_Laplace(const float &al, const bool &an)
: l(al),
renormalize(an)
{}
PProbabilityEstimator TProbabilityEstimatorConstructor_Laplace::operator()(PDistribution frequencies, PDistribution, PExampleGenerator, const long &, const int &) const
{ TProbabilityEstimator_FromDistribution *pefd = mlnew TProbabilityEstimator_FromDistribution(CLONE(TDistribution, frequencies));
PProbabilityEstimator estimator = pefd;
TDiscDistribution *ddist = pefd->probabilities.AS(TDiscDistribution);
if (ddist) {
const float &abs = ddist->abs;
const float &cases = ddist->cases;
const float div = cases + l * ddist->noOfElements();
int i = 0;
if (div) {
if ((cases == abs) || !renormalize || (abs<1e-20))
PITERATE(TDiscDistribution, di, ddist)
ddist->setint(i++, (*di + l) / div);
else
PITERATE(TDiscDistribution, di, ddist)
ddist->setint(i++, (*di / abs * cases + l) / div);
}
else
pefd->probabilities->normalize();
}
else
pefd->probabilities->normalize();
return estimator;
}
TProbabilityEstimatorConstructor_m::TProbabilityEstimatorConstructor_m(const float &am, const bool &an)
: m(am),
renormalize(an)
{}
PProbabilityEstimator TProbabilityEstimatorConstructor_m::operator()(PDistribution frequencies, PDistribution apriori, PExampleGenerator, const long &weightID, const int &) const
{ TProbabilityEstimator_FromDistribution *pefd = mlnew TProbabilityEstimator_FromDistribution(CLONE(TDistribution, frequencies));
PProbabilityEstimator estimator = pefd;
TDiscDistribution *ddist = pefd->probabilities.AS(TDiscDistribution);
if (ddist && (ddist->cases > 1e-20) && apriori) {
TDiscDistribution *dapriori = apriori.AS(TDiscDistribution);
if (!dapriori || (dapriori->abs < 1e-20))
raiseError("invalid apriori distribution");
float mabs = m/dapriori->abs;
const float &abs = ddist->abs;
const float &cases = ddist->cases;
const float div = cases + m;
if ((abs==cases) || !renormalize) {
int i = 0;
for(TDiscDistribution::iterator di(ddist->begin()), de(ddist->end()), ai(dapriori->begin());
di != de;
di++, ai++, i++)
ddist->setint(i, (*di+*ai*mabs)/div);
}
else {
int i = 0;
for(TDiscDistribution::iterator di(ddist->begin()), de(ddist->end()), ai(dapriori->begin());
di != de;
di++, ai++, i++)
ddist->setint(i, (*di / abs * cases + *ai*mabs)/div);
}
}
else
pefd->probabilities->normalize();
return estimator;
}
TProbabilityEstimatorConstructor_kernel::TProbabilityEstimatorConstructor_kernel(const float &minImp, const float &smoo, const int &nP)
: minImpact(minImp),
smoothing(smoo),
nPoints(nP)
{}
PProbabilityEstimator TProbabilityEstimatorConstructor_kernel::operator()(PDistribution frequencies, PDistribution apriori, PExampleGenerator, const long &weightID, const int &) const
{ TContDistribution *cdist = frequencies.AS(TContDistribution);
if (!cdist)
raiseError("continuous distribution expected");
if (!cdist->size())
raiseError("empty distribution");
if ((minImpact<0.0) || (minImpact>1.0))
raiseError("'minImpact' should be between 0.0 and 1.0 (not %5.3f)", minImpact);
vector<float> points;
distributePoints(cdist->distribution, nPoints, points);
TContDistribution *curve = mlnew TContDistribution(frequencies->variable);
PDistribution wcurve = curve;
/* Bandwidth suggested by Chad Shaw. Also found in http://www.stat.lsa.umich.edu/~kshedden/Courses/Stat606/Notes/interpolate.pdf */
const float h = smoothing * sqrt(cdist->error()) * exp(- 1.0/5.0 * log(cdist->abs)); // 1.144
const float hsqrt2pi = h * 2.5066282746310002;
float t;
if (minImpact>0) {
t = -2 * log(minImpact*hsqrt2pi); // 2.5066... == sqrt(2*pi)
if (t<=0) {
// minImpact too high, but that's user's problem...
ITERATE(vector<float>, pi, points)
curve->setfloat(*pi, 0.0);
return wcurve;
}
else
t = h * sqrt(t);
}
ITERATE(vector<float>, pi, points) {
const float &x = *pi;
TContDistribution::const_iterator from, to;
if (minImpact>0) {
from = cdist->lower_bound(x-t);
to = cdist->lower_bound(x+t);
if ((from==cdist->end()) || (to==cdist->begin()) || (from==to)) {
curve->setfloat(x, 0.0);
continue;
}
}
else {
from = cdist->begin();
to = cdist->end();
}
float p = 0.0, n = 0.0;
for(; from != to; from++) {
n += (*from).second;
p += (*from).second * exp( - 0.5 * sqr( (x - (*from).first)/h ) );
}
curve->setfloat(x, p/hsqrt2pi/(n*h)); // hsqrt2pi is from the inside (errf), n*h is for the sum average
}
return mlnew TProbabilityEstimator_FromDistribution(curve);
}
TProbabilityEstimatorConstructor_loess::TProbabilityEstimatorConstructor_loess(const float &windowProp, const int &ak)
: windowProportion(windowProp),
nPoints(ak),
distributionMethod(DISTRIBUTE_MINIMAL)
{}
PProbabilityEstimator TProbabilityEstimatorConstructor_loess::operator()(PDistribution frequencies, PDistribution, PExampleGenerator, const long &weightID, const int &attrNo) const
{ TContDistribution *cdist = frequencies.AS(TContDistribution);
if (!cdist)
if (frequencies && frequencies->variable)
raiseError("attribute '%s' is not continuous", cdist->variable->name.c_str());
else
raiseError("continuous distribution expected");
if (!cdist->size())
raiseError("empty distribution");
map<float, float> loesscurve;
loess(cdist->distribution, nPoints, windowProportion, loesscurve, distributionMethod);
return mlnew TProbabilityEstimator_FromDistribution(mlnew TContDistribution(loesscurve));
}
TConditionalProbabilityEstimator_FromDistribution::TConditionalProbabilityEstimator_FromDistribution(PContingency cont)
: TConditionalProbabilityEstimator(true, true),
probabilities(cont)
{ if (probabilities) {
supportsContinuous = (probabilities->varType == TValue::FLOATVAR);
supportsDiscrete = (probabilities->varType == TValue::INTVAR);
}
}
float TConditionalProbabilityEstimator_FromDistribution::operator()(const TValue &val, const TValue &condition) const
{ if (condition.varType == TValue::INTVAR)
return probabilities->operator[](condition)->operator[](val);
else if (condition.varType == TValue::FLOATVAR) {
if (condition.isSpecial() || val.isSpecial())
raiseError("undefined attribute value for condition");
if (probabilities->varType != TValue::FLOATVAR)
raiseError("invalid attribute type for condition");
const TDistributionMap *dm = probabilities->continuous;
const float &x = condition.floatV;
TDistributionMap::const_iterator rb = dm->upper_bound(x);
if (rb==dm->end())
return 0.0;
if ((*rb).first==x)
return (*rb).second->operator[](val);
if (rb==dm->begin())
return 0.0;
const float &x2 = (*rb).first, &y2 = (*rb).second->operator[](val);
rb--;
const float &x1 = (*rb).first, &y1 = (*rb).second->operator[](val);
if (x1 == x2)
return (y1+y2)/2;
return y1 + (x - x1) * (y2 - y1) / (x2 - x1);
}
raiseError("invalid attribute type for condition");
return 0.0;
}
PDistribution TConditionalProbabilityEstimator_FromDistribution::operator()(const TValue &condition) const
{ if (condition.varType == TValue::INTVAR)
return probabilities->operator[](condition);
else if (condition.varType == TValue::FLOATVAR) {
if (condition.isSpecial())
raiseError("undefined attribute value for condition");
if (probabilities->varType != TValue::FLOATVAR)
raiseError("invalid attribute value type for condition");
const float &x = condition.floatV;
const TDistributionMap *dm = probabilities->continuous;
TDistributionMap::const_iterator rb = dm->upper_bound(x);
if (rb==dm->end())
rb = dm->begin();
TDistribution *result = CLONE(TDistribution, (*rb).second);
PDistribution wresult = result;
if ((rb==dm->begin()) && ((*rb).first!=x)) {
(*result) *= 0;
return wresult;
}
const float &x2 = (*rb).first;
rb--;
const float &x1 = (*rb).first;
const PDistribution &y1 = (*rb).second;
if (x1 == x2) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -