📄 bayes.hpp
字号:
/*
This file is part of Orange.
Orange is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Orange is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Orange; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Authors: Janez Demsar, Blaz Zupan, 1996--2002
Contact: janez.demsar@fri.uni-lj.si
*/
#ifndef __BAYES_HPP
#define __BAYES_HPP
#include "classify.hpp"
#include "estimateprob.hpp"
#include "learn.hpp"
WRAPPER(DomainContingency);
WRAPPER(ProbabilityEstimator);
class ORANGE_API TBayesLearner : public TLearner {
public:
__REGISTER_CLASS
PProbabilityEstimatorConstructor estimatorConstructor; //P constructs a probability estimator for P(C)
PConditionalProbabilityEstimatorConstructor conditionalEstimatorConstructor; //P constructs a probability estimator for P(C|A)
PConditionalProbabilityEstimatorConstructor conditionalEstimatorConstructorContinuous; //P constructs a probability estimator for P(C|A) for continuous attributes
bool normalizePredictions; //P instructs learner to construct a classifier that normalizes probabilities
bool adjustThreshold; //P adjust probability thresholds (for binary classes only)
TBayesLearner();
TBayesLearner(const TBayesLearner &old);
virtual PClassifier operator()(PExampleGenerator, const int & =0);
};
/* Naive Bayesian classifier.
If classDistribution is given, it is used; if not, estimator is called to get class probabilities.
Further, conditionalDistributions are used for attributes for which they are defined; for others,
a corresponding conditionalEstimator is called. */
class ORANGE_API TBayesClassifier : public TClassifierFD {
public:
__REGISTER_CLASS
PDistribution distribution; //P class distributions (P(C))
PDomainContingency conditionalDistributions; //P conditional distributions, P(C|A)
PProbabilityEstimator estimator; //P a probability estimator for P(C)
PConditionalProbabilityEstimatorList conditionalEstimators; //P a probability estimator for P(C|A)
bool normalizePredictions; //P if true, classifier will normalize predictions
float threshold; //P threshold probability for class 1 (for binary classes only)
TBayesClassifier(const bool &anP=true);
TBayesClassifier(PDomain, PDistribution, PDomainContingency, PProbabilityEstimator = PProbabilityEstimator(), PConditionalProbabilityEstimatorList = PConditionalProbabilityEstimatorList(), const bool &anP=true, const float &thresh = 0.5);
virtual TValue operator ()(const TExample &);
virtual PDistribution classDistribution(const TExample &);
virtual void predictionAndDistribution(const TExample &, TValue &, PDistribution &);
virtual float p(const TValue &classVal, const TExample &exam);
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -