📄 svm.hpp
字号:
/*
This file is part of Orange.
Orange is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Orange is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Orange; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Authors: Janez Demsar, Blaz Zupan, 1996--2006
Contact: ales.erjavec@fri.uni-lj.si
*/
/*
Copyright (c) 2000-2005 Chih-Chung Chang and Chih-Jen Lin
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither name of copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __SVM_HPP
#define __SVM_HPP
#include "table.hpp"
class TSVMLearner;
class TSVMClassifier;
/*##########################################
##########################################*/
#ifndef _LIBSVM_H
#define _LIBSVM_H
#ifdef __cplusplus
extern "C" {
#endif
struct svm_node
{
int index;
double value;
};
struct svm_problem
{
int l;
double *y;
struct svm_node **x;
};
enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
enum { LINEAR, POLY, RBF, SIGMOID, CUSTOM }; /* kernel_type */
struct svm_parameter
{
int svm_type;
int kernel_type;
double degree; /* for poly */
double gamma; /* for poly/rbf/sigmoid */
double coef0; /* for poly/sigmoid */
/* these are for training only */
double cache_size; /* in MB */
double eps; /* stopping criteria */
double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
int nr_weight; /* for C_SVC */
int *weight_label; /* for C_SVC */
double* weight; /* for C_SVC */
double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
double p; /* for EPSILON_SVR */
int shrinking; /* use the shrinking heuristics */
int probability; /* do probability estimates */
TSVMLearner *learner;
TSVMClassifier *classifier;
};
struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
int svm_save_model(const char *model_file_name, const struct svm_model *model);
struct svm_model *svm_load_model(const char *model_file_name);
int svm_get_svm_type(const struct svm_model *model);
int svm_get_nr_class(const struct svm_model *model);
void svm_get_labels(const struct svm_model *model, int *label);
double svm_get_svr_probability(const struct svm_model *model);
void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
double svm_predict(const struct svm_model *model, const struct svm_node *x);
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
void svm_destroy_model(struct svm_model *model);
void svm_destroy_param(struct svm_parameter *param);
const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
int svm_check_probability_model(const struct svm_model *model);
#ifdef __cplusplus
}
#endif
#endif /* _LIBSVM_H */
/*##########################################
##########################################*/
#include <iostream>
#include "classify.hpp"
#include "learn.hpp"
#include "orange.hpp"
#include "domain.hpp"
#include "examplegen.hpp"
#include "table.hpp"
#include "examples.hpp"
#include "distance.hpp"
WRAPPER(ExampleGenerator)
WRAPPER(KernelFunc)
WRAPPER(SVMLearner)
WRAPPER(SVMClassifier)
WRAPPER(ExampleTable)
class ORANGE_API TKernelFunc: public TOrange{
public:
__REGISTER_ABSTRACT_CLASS
virtual float operator()(const TExample &, const TExample &)=0;
};
WRAPPER(KernelFunc)
//#include "callback.hpp"
class ORANGE_API TSVMLearner : public TLearner{
public:
__REGISTER_CLASS
//parameters
int svm_type; //P SVM type (C_SVC=0, NU_SVC, ONE_CLASS, EPSILON_SVR=3, NU_SVR=4)
int kernel_type; //P kernel type (LINEAR=0, POLY, RBF, SIGMOID, CUSTOM=4)
float degree; //P polynomial kernel degree
float gamma; //P poly/rbf/sigm parameter
float coef0; //P poly/sigm parameter
float cache_size; //P cache size in MB
float eps; //P stopping criteria
float C; //P for C_SVC and C_SVR
float nu; //P for NU_SVC and ONE_CLASS
float p; //P for C_SVR
int shrinking; //P shrinking
int probability; //P probability
PKernelFunc kernelFunc; //P custom kernel function
PExampleTable tempExamples;
TSVMLearner();
PClassifier operator()(PExampleGenerator, const int & = 0);
};
class ORANGE_API TSVMClassifier : public TClassifier{
public:
__REGISTER_CLASS
TSVMClassifier(){};
TSVMClassifier(PVariable, PExampleTable, svm_model*, svm_node*);
~TSVMClassifier();
TValue operator()(const TExample&);
PDistribution classDistribution(const TExample &);
PFloatList getDecisionValues(const TExample &);
PFloatList rho; //PR rho
PFloatListList coef; //PR coef
PExampleTable supportVectors; //PR support vectors
PExampleTable examples; //P examples used to train the classifier
PKernelFunc kernelFunc; //PR custom kernel function
const TExample *currentExample;
private:
svm_model *model;
svm_node *x_space;
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -