📄 majority.cpp
字号:
/*
This file is part of Orange.
Orange is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Orange is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Orange; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Authors: Janez Demsar, Blaz Zupan, 1996--2002
Contact: janez.demsar@fri.uni-lj.si
*/
#include <math.h>
#include "random.hpp"
#include "vars.hpp"
#include "domain.hpp"
#include "distvars.hpp"
#include "examples.hpp"
#include "examplegen.hpp"
#include "table.hpp"
#include "classify.hpp"
#include "measures.hpp"
#include "estimateprob.hpp"
#include "cost.hpp"
#include "majority.ppp"
TMajorityLearner::TMajorityLearner()
{}
PClassifier TMajorityLearner::operator()(PExampleGenerator ogen, const int &weight)
{ if (!ogen->domain->classVar)
raiseError("class-less domain");
PDistribution classDistr = getClassDistribution(ogen, weight);
if (estimatorConstructor)
classDistr = estimatorConstructor->call(classDistr, aprioriDistribution, ogen, weight)->call();
if (!classDistr)
raiseError("invalid estimatorConstructor");
else
classDistr->normalize();
return mlnew TDefaultClassifier(ogen->domain->classVar,
classDistr->supportsContinuous ? TValue(classDistr->average()) : classDistr->highestProbValue(classDistr->cases),
classDistr);
}
TCostLearner::TCostLearner(PCostMatrix acost)
: cost(acost)
{}
PClassifier TCostLearner::operator()(PExampleGenerator gen, const int &weight)
{ if (!gen->domain->classVar)
raiseError("class-less domain");
if (gen->domain->classVar->varType!=TValue::INTVAR)
raiseError("cost-sensitive learning for continuous classes not supported");
checkProperty(cost);
PClassifier clsfr = TMajorityLearner::operator()(gen, weight);
float missclassificationCost;
TMeasureAttribute_cost(cost).majorityCost(clsfr.AS(TDefaultClassifier)->defaultDistribution,
missclassificationCost,
clsfr.AS(TDefaultClassifier)->defaultVal);
return clsfr;
}
TRandomLearner::TRandomLearner()
{}
TRandomLearner::TRandomLearner(PDistribution dist)
: probabilities(dist)
{}
#include "basstat.hpp"
PClassifier TRandomLearner::operator()(PExampleGenerator gen, const int &weight)
{
if (probabilities)
return new TRandomClassifier(probabilities);
PVariable &classVar = gen->domain->classVar;
if (!classVar)
raiseError("classless domain");
if (classVar->varType == TValue::INTVAR)
return new TRandomClassifier(getClassDistribution(gen, weight));
if (classVar->varType == TValue::FLOATVAR) {
TBasicAttrStat stat(gen, classVar, weight);
return new TRandomClassifier(TGaussianDistribution(stat.avg, stat.dev));
}
raiseError("unsupported class type");
return NULL;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -