📄 pp-weights.py
字号:
# Description: Shows how to reweight the examples to modify the class distribution
# Category: preprocessing, weighting
# Classes: Preprocessor, Preprocessor_addClassWeight
# Uses: lenses
# Referenced: preprocessing.htm
import orange
data = orange.ExampleTable("lenses")
age, prescr, astigm, tears, y = data.domain.variables
pp = orange.Preprocessor_addClassWeight()
pp.classWeights = [2.0, 1.0, 1.0]
data2, weightID = pp(data)
# we add a meta attribute so that output is always the same
# (else, the meta id would depend upon the number of meta attributes
# constructed, which would trigger suspicions about randomness in testing scripts
data2.domain.addmeta(weightID, orange.FloatVariable("W"))
print "Assigning weight 2.0 to examples from the first class"
print " - original class distribution: ", orange.Distribution(y, data2)
print " - weighted class distribution: ", orange.Distribution(y, data2, weightID)
pp.classWeights = None
pp.equalize = 1
data2, weightID = pp(data)
data2.domain.addmeta(weightID, orange.FloatVariable("W"))
print "\nEqualizing class distribution"
print " - original class distribution: ", orange.Distribution(y, data2)
print " - weighted class distribution: ", orange.Distribution(y, data2, weightID)
pp.classWeights = [0.5, 0.25, 0.25]
pp.equalize = 1
data2, weightID = pp(data)
data2.domain.addmeta(weightID, orange.FloatVariable("W"))
print "\nEqualizing class distribution and weighting by [0.5, 0.25, 0.25]"
print " - original class distribution: ", orange.Distribution(y, data2)
print " - weighted class distribution: ", orange.Distribution(y, data2, weightID)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -