📄 costmatrix.py
字号:
# Description: Shows how to assess the quality of attributes not in the dataset
# Category: attribute quality
# Classes: EntropyDiscretization, MeasureAttribute, MeasureAttribute_info
# Uses: iris
# Referenced: MeasureAttribute.htm
import orange
print
print "Default matrix of size 3"
cm = orange.CostMatrix(3)
print "classVar =", cm.classVar
for pred in range(3):
for corr in range(3):
print cm.getcost(pred, corr),
print
print
print "Matrix for Iris, with default element 2 and several modified elements"
data = orange.ExampleTable("iris")
cm = orange.CostMatrix(data.domain.classVar, 2)
cm.setcost("Iris-setosa", "Iris-virginica", 1)
cm.setcost("Iris-versicolor", "Iris-virginica", 1)
print "classVar = %s, values = %s" % (cm.classVar.name, cm.classVar.values)
for pred in range(3):
for corr in range(3):
print cm.getcost(pred, corr),
print
print
print "Manually initialized matrix"
cm = orange.CostMatrix(data.domain.classVar, [(0, 2, 1), (2, 0, 1), (2, 2, 0)])
for pred in range(3):
for corr in range(3):
print `cm.getcost(pred, corr)`,
print
data = orange.ExampleTable("lenses")
print
print "Cost-sensitive attribute quality"
meas = orange.MeasureAttribute_cost()
meas.cost = ((0, 2, 1), (2, 0, 1), (2, 2, 0))
for attr in data.domain.attributes:
print "%s: %5.3f" % (attr.name, meas(attr, data))
print
data = orange.ExampleTable("lenses")
print
print "Cost-sensitive attribute quality"
meas = orange.MeasureAttribute_cost()
meas.cost = data.domain.classVar
for attr in data.domain.attributes:
print "%s: %5.3f" % (attr.name, meas(attr, data))
print
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -