⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c45.py

📁 orange源码 数据挖掘技术
💻 PY
字号:
# Description: Shows how to use C4.5 learner
# Category:    learning
# Classes:     C45Learner, C45Classifier
# Uses:        iris
# Referenced:  C45Learner.htm

import orange

#data = orange.ExampleTable("lenses.tab")
data = orange.ExampleTable("iris")
tree = orange.C45Learner(data)

print "\n\nC4.5 with default arguments"
for i in data[:5]:
    print tree(i), i.getclass()

print "\n\nC4.5 with m=100"
tree = orange.C45Learner(data, m=100)
for i in data[:5]:
    print tree(i), i.getclass()

print "\n\nC4.5 with minObjs=100"
tree = orange.C45Learner(data, minObjs=100)
for i in data[:5]:
    print tree(i), i.getclass()

print "\n\nC4.5 with -m 1 and -s"
lrn = orange.C45Learner()
lrn.commandline("-m 1 -s")
tree = lrn(data)
for i in data:
    if i.getclass() != tree(i):
        print i, tree(i)


import orngC45
tree = orange.C45Learner(data)
orngC45.printTree(tree)
print

import orngStat, orngTest
res = orngTest.crossValidation([orange.C45Learner(), orange.C45Learner(convertToOrange=1)], data)
print "Classification accuracy: %5.3f (converted to tree: %5.3f)" % tuple(orngStat.CA(res))
print "Brier score: %5.3f (converted to tree: %5.3f)" % tuple(orngStat.BrierScore(res))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -