📄 cb-classifier.py
字号:
# Description: Shows how to derive a Python classifier from orange.Classifier
# Category: classification, callbacks to Python
# Classes: Classifier
# Uses: lenses
# Referenced: callbacks.htm
import orange, orngTree, orngMisc
tab = orange.ExampleTable(r"lenses.tab")
class CartesianClassifier(orange.Classifier):
def __init__(self, var1, var2):
self.var1 = var1
self.var2 = var2
self.noValues2 = len(var2.values)
self.classVar = orange.EnumVariable("%sx%s" % (var1.name, var2.name))
self.classVar.values = ["%s-%s" % (v1, v2) for v1 in var1.values for v2 in var2.values]
def __call__(self, ex, what = orange.Classifier.GetValue):
val = ex[self.var1] * self.noValues2 + ex[self.var2]
if what == orange.Classifier.GetValue:
return orange.Value(self.classVar, val)
probs = orange.DiscDistribution(self.classVar)
probs[val] = 1.0
if what == orange.Classifier.GetProbabilities:
return probs
else:
return (orange.Value(self.classVar, val), probs)
tt =CartesianClassifier(tab.domain[0], tab.domain[1])
for ex in tab:
print "%s ---> %s" % (ex, tt(ex))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -