📄 classifierbylookuptable.py
字号:
# Description: Shows how to construct and use classifiers by lookup table to construct new features from the existing
# Category: classification, lookup classifiers, constructive induction, feature construction
# Classes: ClassifierByLookupTable, ClassifierByLookupTable1, ClassifierByLookupTable2, ClassifierByLookupTable3
# Uses: monk1
# Referenced: lookup.htm
import orange
data = orange.ExampleTable("monk1")
a, b, e = data.domain["a"], data.domain["b"], data.domain["e"]
ab = orange.EnumVariable("a==b", values = ["no", "yes"])
ab.getValueFrom = orange.ClassifierByLookupTable(ab, a, b, ["yes", "no", "no", "no", "yes", "no", "no", "no", "yes"])
e1 = orange.EnumVariable("e==1", values = ["no", "yes"])
e1.getValueFrom = orange.ClassifierByLookupTable(e1, e, ["yes", "no", "no", "no", "?"])
data2 = data.select([a, b, ab, e, e1, data.domain.classVar])
for i in range(5):
print data2.randomexample()
for i in range(5):
ex = data.randomexample()
print "%s: ab %i, e1 %i " % (ex, ab.getValueFrom.getindex(ex), e1.getValueFrom.getindex(ex))
# What follows is only for testing Orange...
ab_c = ab.getValueFrom
print ab_c.variable1.name, ab_c.variable2.name, ab_c.classVar.name
print ab_c.noOfValues1, ab_c.noOfValues2
print [x.name for x in ab_c.variables]
e1_c = e1.getValueFrom
print e1_c.variable1.name, e1_c.classVar.name
print [x.name for x in e1_c.variables]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -