📄 domain7.py
字号:
# Description: Shows how to add class noise and missing attributes to data sets. Also shows how to test a single learner on a range of data sets.
# Category: preprocessing
# Uses: imports-85
# Referenced: domain.htm
import orange
def report_prob(header, data):
print 'Size of %s: %i instances; ' % (header, len(data)),
n = 0
for i in data:
if int(i.getclass())==0:
n = n + 1
if len(data):
print "p(%s)=%5.3f" % (data.domain.classVar.values[0], float(n)/len(data))
else:
print
filename = "../datasets/adult_sample.tab"
data = orange.ExampleTable(filename)
report_prob('data', data)
selection = [1]*10 + [0]*(len(data)-10)
data1 = data.select(selection)
report_prob('data1, first ten instances', data1)
data2 = data.select(selection, negate=1)
report_prob('data2, other than first ten instances', data2)
selection = [1]*12 + [2]*12 + [3]*12 + [0]*(len(data)-12*3)
data3 = data.select(selection, 3)
report_prob('data3, third dozen of instances', data3)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -