⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 handful.py

📁 orange源码 数据挖掘技术
💻 PY
字号:
# Description: Read data, learn several models (bayes, kNN, decision tree) and for all models output class probabilities they return for first few instances
# Category:    modelling
# Uses:        voting.tab
# Classes:     MajorityLearner, BayesLearner, orngTree.TreeLearner, kNNLearner
# Referenced:  c_otherclass.htm

import orange, orngTree
data = orange.ExampleTable("voting")

# setting up the classifiers
majority = orange.MajorityLearner(data)
bayes = orange.BayesLearner(data)
tree = orngTree.TreeLearner(data, sameMajorityPruning=1, mForPruning=2)
knn = orange.kNNLearner(data, k=21)

majority.name="Majority"; bayes.name="Naive Bayes";
tree.name="Tree"; knn.name="kNN"

classifiers = [majority, bayes, tree, knn]

# print the head
print "Possible classes:", data.domain.classVar.values
print "Probability for republican:"
print "Original Class",
for l in classifiers:
    print "%-13s" % (l.name),
print

# classify first 10 instances and print probabilities
for example in data[:10]:
    print "(%-10s)  " % (example.getclass()),
    for c in classifiers:
        p = apply(c, [example, orange.GetProbabilities])
        print "%5.3f        " % (p[0]),
    print

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -