📄 handful.py
字号:
# Description: Read data, learn several models (bayes, kNN, decision tree) and for all models output class probabilities they return for first few instances
# Category: modelling
# Uses: voting.tab
# Classes: MajorityLearner, BayesLearner, orngTree.TreeLearner, kNNLearner
# Referenced: c_otherclass.htm
import orange, orngTree
data = orange.ExampleTable("voting")
# setting up the classifiers
majority = orange.MajorityLearner(data)
bayes = orange.BayesLearner(data)
tree = orngTree.TreeLearner(data, sameMajorityPruning=1, mForPruning=2)
knn = orange.kNNLearner(data, k=21)
majority.name="Majority"; bayes.name="Naive Bayes";
tree.name="Tree"; knn.name="kNN"
classifiers = [majority, bayes, tree, knn]
# print the head
print "Possible classes:", data.domain.classVar.values
print "Probability for republican:"
print "Original Class",
for l in classifiers:
print "%-13s" % (l.name),
print
# classify first 10 instances and print probabilities
for example in data[:10]:
print "(%-10s) " % (example.getclass()),
for c in classifiers:
p = apply(c, [example, orange.GetProbabilities])
print "%5.3f " % (p[0]),
print
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -