📄 nbdisc.py
字号:
# Description: Class that embeds naive Bayesian classifier, but when learning discretizes the data with entropy-based discretization (which uses training data only)
# Category: modelling
# Referenced: c_nb_disc.htm
import orange
class Learner(object):
def __new__(cls, examples=None, name='discretized bayes', **kwds):
learner = object.__new__(cls, **kwds)
if examples:
learner.__init__(name) # force init
return learner(examples)
else:
return learner # invokes the __init__
def __init__(self, name='discretized bayes'):
self.name = name
def __call__(self, data, weight=None):
disc = orange.Preprocessor_discretize( \
data, method=orange.EntropyDiscretization())
model = orange.BayesLearner(disc, weight)
return Classifier(classifier = model)
class Classifier:
def __init__(self, **kwds):
self.__dict__ = kwds
def __call__(self, example, resultType = orange.GetValue):
return self.classifier(example, resultType)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -