📄 domain13.py
字号:
# Description: Adds two new numerical attributes to iris data set, and tests through cross validation if this helps in boosting classification accuracy
# Category: modelling
# Uses: iris
# Classes: Domain, FloatVariable, MakeRandomIndicesCV, orngTest.testWithIndices
# Referenced: domain.htm
import orange, orngTest, orngStat, orngTree
data = orange.ExampleTable('iris')
sa = orange.FloatVariable("sepal area")
sa.getValueFrom = lambda e, getWhat: e['sepal length'] * e['sepal width']
pa = orange.FloatVariable("petal area")
pa.getValueFrom = lambda e, getWhat: e['petal length'] * e['petal width']
newdomain = orange.Domain(data.domain.attributes+[sa, pa, data.domain.classVar])
newdata = data.select(newdomain)
learners = [orngTree.TreeLearner(mForPruning=2.0)]
indices = orange.MakeRandomIndicesCV(data, 10)
res1 = orngTest.testWithIndices(learners, data, indices)
res2 = orngTest.testWithIndices(learners, newdata, indices)
print "original: %5.3f, new: %5.3f" % (orngStat.CA(res1)[0], orngStat.CA(res2)[0])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -