📄 disc.py
字号:
# Description: Entropy based discretization compared to discretization with equal-frequency
# of instances in intervals
# Category: preprocessing
# Uses: iris.tab
# Classes: Preprocessor_discretize, EntropyDiscretization
# Referenced: o_categorization.htm
import orange
def show_values(data, heading):
print heading
for a in data.domain.attributes:
print "%s: %s" % (a.name, reduce(lambda x,y: x+', '+y, [i for i in a.values]))
data = orange.ExampleTable("iris")
data_ent = orange.Preprocessor_discretize(data, method=orange.EntropyDiscretization())
show_values(data_ent, "Entropy based discretization")
print
data_n = orange.Preprocessor_discretize(data, method=orange.EquiNDiscretization(numberOfIntervals=3))
show_values(data_n, "Equal-frequency intervals")
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -