📄 domain8.py
字号:
# Description: Shows how to add class noise to data
# Category: preprocessing
# Uses: imports-85
# Classes: Preprocessor_addClassNoise, orngTest.crossValidation
# Referenced: domain.htm
import orange, orngTest, orngStat
filename = "promoters.tab"
data = orange.ExampleTable(filename)
data.name = "unspoiled"
datasets = [data]
add_noise = orange.Preprocessor_addClassNoise()
for noiselevel in (0.2, 0.4, 0.6):
add_noise.proportion = noiselevel
add_noise.randomGenerator = 42
d = add_noise(data)
d.name = "class noise %4.2f" % noiselevel
datasets.append(d)
learner = orange.BayesLearner()
for d in datasets:
results = orngTest.crossValidation([learner], d, folds=10)
print "%20s %5.3f" % (d.name, orngStat.CA(results)[0])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -