📄 accuracy4.py
字号:
# Description: Estimation of accuracy by random sampling.
# User can set what proportion of data will be used in training.
# Demonstration of use for different learners.
# Category: evaluation
# Uses: voting.tab
# Classes: MakeRandomIndices2
# Referenced: c_performance.htm
import orange, orngTree
def accuracy(test_data, classifiers):
correct = [0.0]*len(classifiers)
for ex in test_data:
for i in range(len(classifiers)):
if classifiers[i](ex) == ex.getclass():
correct[i] += 1
for i in range(len(correct)):
correct[i] = correct[i] / len(test_data)
return correct
def test_rnd_sampling(data, learners, p=0.7, n=10):
acc = [0.0]*len(learners)
for i in range(n):
selection = orange.MakeRandomIndices2(data, p)
train_data = data.select(selection, 0)
test_data = data.select(selection, 1)
classifiers = []
for l in learners:
classifiers.append(l(train_data))
acc1 = accuracy(test_data, classifiers)
print "%d: %s" % (i+1, acc1)
for j in range(len(learners)):
acc[j] += acc1[j]
for j in range(len(learners)):
acc[j] = acc[j]/n
return acc
orange.setrandseed(0)
# set up the learners
bayes = orange.BayesLearner()
tree = orngTree.TreeLearner();
#tree = orngTree.TreeLearner(mForPruning=2)
bayes.name = "bayes"
tree.name = "tree"
learners = [bayes, tree]
# compute accuracies on data
data = orange.ExampleTable("voting")
acc = test_rnd_sampling(data, learners)
print "Classification accuracies:"
for i in range(len(learners)):
print learners[i].name, acc[i]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -