📄 tuning1.py
字号:
import orange, orngTree, orngWrap, orngStat
learner = orngTree.TreeLearner()
data = orange.ExampleTable("voting")
tuner = orngWrap.Tune1Parameter(object=learner,
parameter="minSubset",
values=[1, 2, 3, 4, 5, 10, 15, 20],
evaluate = orngStat.AUC, verbose=2)
classifier = tuner(data)
print "Optimal setting: ", learner.minSubset
import orngTest
untuned = orngTree.TreeLearner()
res = orngTest.crossValidation([untuned, tuner], data)
AUCs = orngStat.AUC(res)
print "Untuned tree: %5.3f" % AUCs[0]
print "Tuned tree: %5.3f" % AUCs[1]
learner = orngTree.TreeLearner(minSubset=10).instance()
data = orange.ExampleTable("voting")
tuner = orngWrap.Tune1Parameter(object=learner,
parameter=["split.continuousSplitConstructor.minSubset", "split.discreteSplitConstructor.minSubset"],
values=[1, 2, 3, 4, 5, 10, 15, 20],
evaluate = orngStat.AUC, verbose=2)
classifier = tuner(data)
print "Optimal setting: ", learner.split.continuousSplitConstructor.minSubset
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -