📄 ensemble3.py
字号:
# Description: Defines a tree learner (trunks of depth less than 5) and uses them in forest tree, prints out the number of nodes in each tree
# Category: classification, ensembles
# Classes: RandomForestLearner
# Uses: bupa.tab
# Referenced: orngEnsemble.htm
import orange, orngTree, orngEnsemble
data = orange.ExampleTable('bupa.tab')
tree = orngTree.TreeLearner(storeNodeClassifier = 0, storeContingencies=0, \
storeDistributions=1, minExamples=5, ).instance()
gini = orange.MeasureAttribute_gini()
tree.split.discreteSplitConstructor.measure = \
tree.split.continuousSplitConstructor.measure = gini
tree.maxDepth = 5
tree.split = orngEnsemble.SplitConstructor_AttributeSubset(tree.split, 3)
forestLearner = orngEnsemble.RandomForestLearner(learner=tree, trees=50)
forest = forestLearner(data)
for c in forest.classifiers:
print orngTree.countNodes(c),
print
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -