⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgghrd.c

📁 提供矩阵类的函数库
💻 C
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static doublecomplex c_b2 = {0.,0.};
static integer c__1 = 1;

/* Subroutine */ int zgghrd_(char *compq, char *compz, integer *n, integer *
	ilo, integer *ihi, doublecomplex *a, integer *lda, doublecomplex *b, 
	integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__, 
	integer *ldz, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3;
    doublecomplex z__1;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    static integer jcol;
    static doublereal temp;
    static integer jrow;
    extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *);
    static doublereal c__;
    static doublecomplex s;
    extern logical lsame_(char *, char *);
    static doublecomplex ctemp;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer icompq, icompz;
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
	    doublecomplex *, doublecomplex *);
    static logical ilq, ilz;


#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   

       ---------------------- Begin Timing Code -------------------------   
       Common block to return operation count and iteration count   
       ITCNT is initialized to 0, OPS is only incremented   
       OPST is used to accumulate small contributions to OPS   
       to avoid roundoff error   
       ----------------------- End Timing Code --------------------------   


    Purpose   
    =======   

    ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper   
    Hessenberg form using unitary transformations, where A is a   
    general matrix and B is upper triangular:  Q' * A * Z = H and   
    Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular,   
    and Q and Z are unitary, and ' means conjugate transpose.   

    The unitary matrices Q and Z are determined as products of Givens   
    rotations.  They may either be formed explicitly, or they may be   
    postmultiplied into input matrices Q1 and Z1, so that   

         Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'   
         Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)'   

    Arguments   
    =========   

    COMPQ   (input) CHARACTER*1   
            = 'N': do not compute Q;   
            = 'I': Q is initialized to the unit matrix, and the   
                   unitary matrix Q is returned;   
            = 'V': Q must contain a unitary matrix Q1 on entry,   
                   and the product Q1*Q is returned.   

    COMPZ   (input) CHARACTER*1   
            = 'N': do not compute Q;   
            = 'I': Q is initialized to the unit matrix, and the   
                   unitary matrix Q is returned;   
            = 'V': Q must contain a unitary matrix Q1 on entry,   
                   and the product Q1*Q is returned.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that A is already upper triangular in rows and   
            columns 1:ILO-1 and IHI+1:N.  ILO and IHI are normally set   
            by a previous call to ZGGBAL; otherwise they should be set   
            to 1 and N respectively.   
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA, N)   
            On entry, the N-by-N general matrix to be reduced.   
            On exit, the upper triangle and the first subdiagonal of A   
            are overwritten with the upper Hessenberg matrix H, and the   
            rest is set to zero.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    B       (input/output) COMPLEX*16 array, dimension (LDB, N)   
            On entry, the N-by-N upper triangular matrix B.   
            On exit, the upper triangular matrix T = Q' B Z.  The   
            elements below the diagonal are set to zero.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    Q       (input/output) COMPLEX*16 array, dimension (LDQ, N)   
            If COMPQ='N':  Q is not referenced.   
            If COMPQ='I':  on entry, Q need not be set, and on exit it   
                           contains the unitary matrix Q, where Q'   
                           is the product of the Givens transformations   
                           which are applied to A and B on the left.   
            If COMPQ='V':  on entry, Q must contain a unitary matrix   
                           Q1, and on exit this is overwritten by Q1*Q.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.   
            LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.   

    Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)   
            If COMPZ='N':  Z is not referenced.   
            If COMPZ='I':  on entry, Z need not be set, and on exit it   
                           contains the unitary matrix Z, which is   
                           the product of the Givens transformations   
                           which are applied to A and B on the right.   
            If COMPZ='V':  on entry, Z must contain a unitary matrix   
                           Z1, and on exit this is overwritten by Z1*Z.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.   
            LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    This routine reduces A to Hessenberg and B to triangular form by   
    an unblocked reduction, as described in _Matrix_Computations_,   
    by Golub and van Loan (Johns Hopkins Press).   

    =====================================================================   


       Decode COMPQ   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;

    /* Function Body */
    if (lsame_(compq, "N")) {
	ilq = FALSE_;
	icompq = 1;
    } else if (lsame_(compq, "V")) {
	ilq = TRUE_;
	icompq = 2;
    } else if (lsame_(compq, "I")) {
	ilq = TRUE_;
	icompq = 3;
    } else {
	icompq = 0;
    }

/*     Decode COMPZ */

    if (lsame_(compz, "N")) {
	ilz = FALSE_;
	icompz = 1;
    } else if (lsame_(compz, "V")) {
	ilz = TRUE_;
	icompz = 2;
    } else if (lsame_(compz, "I")) {
	ilz = TRUE_;
	icompz = 3;
    } else {
	icompz = 0;
    }

/*     Test the input parameters. */

    *info = 0;
    if (icompq <= 0) {
	*info = -1;
    } else if (icompz <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1) {
	*info = -4;
    } else if (*ihi > *n || *ihi < *ilo - 1) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (ilq && *ldq < *n || *ldq < 1) {
	*info = -11;
    } else if (ilz && *ldz < *n || *ldz < 1) {
	*info = -13;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGGHRD", &i__1);
	return 0;
    }

/*     Initialize Q and Z if desired. */

    if (icompq == 3) {
	zlaset_("Full", n, n, &c_b2, &c_b1, &q[q_offset], ldq);
    }
    if (icompz == 3) {
	zlaset_("Full", n, n, &c_b2, &c_b1, &z__[z_offset], ldz);
    }

/*     Quick return if possible */

    if (*n <= 1) {
	return 0;
    }

/*     Zero out lower triangle of B */

    i__1 = *n - 1;
    for (jcol = 1; jcol <= i__1; ++jcol) {
	i__2 = *n;
	for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
	    i__3 = b_subscr(jrow, jcol);
	    b[i__3].r = 0., b[i__3].i = 0.;
/* L10: */
	}
/* L20: */
    }

/*     Reduce A and B */

    i__1 = *ihi - 2;
    for (jcol = *ilo; jcol <= i__1; ++jcol) {

	i__2 = jcol + 2;
	for (jrow = *ihi; jrow >= i__2; --jrow) {

/*           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */

	    i__3 = a_subscr(jrow - 1, jcol);
	    ctemp.r = a[i__3].r, ctemp.i = a[i__3].i;
	    zlartg_(&ctemp, &a_ref(jrow, jcol), &c__, &s, &a_ref(jrow - 1, 
		    jcol));
	    i__3 = a_subscr(jrow, jcol);
	    a[i__3].r = 0., a[i__3].i = 0.;
	    i__3 = *n - jcol;
	    zrot_(&i__3, &a_ref(jrow - 1, jcol + 1), lda, &a_ref(jrow, jcol + 
		    1), lda, &c__, &s);
	    i__3 = *n + 2 - jrow;
	    zrot_(&i__3, &b_ref(jrow - 1, jrow - 1), ldb, &b_ref(jrow, jrow - 
		    1), ldb, &c__, &s);
	    if (ilq) {
		d_cnjg(&z__1, &s);
		zrot_(n, &q_ref(1, jrow - 1), &c__1, &q_ref(1, jrow), &c__1, &
			c__, &z__1);
	    }

/*           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */

	    i__3 = b_subscr(jrow, jrow);
	    ctemp.r = b[i__3].r, ctemp.i = b[i__3].i;
	    zlartg_(&ctemp, &b_ref(jrow, jrow - 1), &c__, &s, &b_ref(jrow, 
		    jrow));
	    i__3 = b_subscr(jrow, jrow - 1);
	    b[i__3].r = 0., b[i__3].i = 0.;
	    zrot_(ihi, &a_ref(1, jrow), &c__1, &a_ref(1, jrow - 1), &c__1, &
		    c__, &s);
	    i__3 = jrow - 1;
	    zrot_(&i__3, &b_ref(1, jrow), &c__1, &b_ref(1, jrow - 1), &c__1, &
		    c__, &s);
	    if (ilz) {
		zrot_(n, &z___ref(1, jrow), &c__1, &z___ref(1, jrow - 1), &
			c__1, &c__, &s);
	    }
/* L30: */
	}
/* L40: */
    }

/*     ---------------------- Begin Timing Code -------------------------   
       Operation count:                                          factor   
       * number of calls to ZLARTG   TEMP                          *32   
       * total number of rows/cols   
         rotated in A and B          TEMP*[6n + 2(ihi-ilo) + 5]/6  *20   
       * rows rotated in Q           TEMP*n/2                      *20   
       * rows rotated in Z           TEMP*n/2                      *20 */

    temp = (doublereal) (*ihi - *ilo) * (doublereal) (*ihi - *ilo - 1);
    jrow = *n * 20 + (*ihi - *ilo) * 7 + 59;
    if (ilq) {
	jrow += *n * 10;
    }
    if (ilz) {
	jrow += *n * 10;
    }
    latime_1.ops += ((doublereal) jrow - (doublereal) (*ihi - *ilo + 1) / 3.) 
	    * temp;
    latime_1.itcnt = 0.;

/*     ----------------------- End Timing Code -------------------------- */

    return 0;

/*     End of ZGGHRD */

} /* zgghrd_ */

#undef z___ref
#undef z___subscr
#undef q_ref
#undef q_subscr
#undef b_ref
#undef b_subscr
#undef a_ref
#undef a_subscr


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -