📄 slasd5.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Subroutine */ int slasd5_(integer *i__, real *d__, real *z__, real *delta,
real *rho, real *dsigma, real *work)
{
/* System generated locals */
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static real b, c__, w, delsq, del, tau;
/* -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
Courant Institute, NAG Ltd., and Rice University
June 30, 1999
Purpose
=======
This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Arguments
=========
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D (input) REAL array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) < D(2).
Z (input) REAL array, dimension ( 2 )
The components of the updating vector.
DELTA (output) REAL array, dimension ( 2 )
Contains (D(j) - lambda_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DSIGMA (output) REAL
The computed lambda_I, the I-th updated eigenvalue.
WORK (workspace) REAL array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th component.
Further Details
===============
Based on contributions by
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
=====================================================================
Parameter adjustments */
--work;
--delta;
--z__;
--d__;
/* Function Body */
latime_1.ops += 3.f;
del = d__[2] - d__[1];
delsq = del * (d__[2] + d__[1]);
if (*i__ == 1) {
latime_1.ops += 13.f;
w = *rho * 4.f * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.f) - z__[1] *
z__[1] / (d__[1] * 3.f + d__[2])) / del + 1.f;
if (w > 0.f) {
latime_1.ops += 8.f;
b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
c__ = *rho * z__[1] * z__[1] * delsq;
/* B > ZERO, always
The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
latime_1.ops += 7.f;
tau = c__ * 2.f / (b + sqrt((r__1 = b * b - c__ * 4.f, dabs(r__1))
));
/* The following TAU is DSIGMA - D( 1 ) */
latime_1.ops += 14.f;
tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
*dsigma = d__[1] + tau;
delta[1] = -tau;
delta[2] = del - tau;
work[1] = d__[1] * 2.f + tau;
work[2] = d__[1] + tau + d__[2];
/* DELTA( 1 ) = -Z( 1 ) / TAU
DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
} else {
latime_1.ops += 8.f;
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
c__ = *rho * z__[2] * z__[2] * delsq;
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
if (b > 0.f) {
latime_1.ops += 7.f;
tau = c__ * -2.f / (b + sqrt(b * b + c__ * 4.f));
} else {
latime_1.ops += 6.f;
tau = (b - sqrt(b * b + c__ * 4.f)) / 2.f;
}
/* The following TAU is DSIGMA - D( 2 ) */
latime_1.ops += 14.f;
tau /= d__[2] + sqrt((r__1 = d__[2] * d__[2] + tau, dabs(r__1)));
*dsigma = d__[2] + tau;
delta[1] = -(del + tau);
delta[2] = -tau;
work[1] = d__[1] + tau + d__[2];
work[2] = d__[2] * 2.f + tau;
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU */
}
latime_1.ops += 6.f;
/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP */
} else {
/* Now I=2 */
latime_1.ops += 8.f;
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
c__ = *rho * z__[2] * z__[2] * delsq;
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
if (b > 0.f) {
latime_1.ops += 6.f;
tau = (b + sqrt(b * b + c__ * 4.f)) / 2.f;
} else {
latime_1.ops += 7.f;
tau = c__ * 2.f / (-b + sqrt(b * b + c__ * 4.f));
}
/* The following TAU is DSIGMA - D( 2 ) */
latime_1.ops += 20.f;
tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
*dsigma = d__[2] + tau;
delta[1] = -(del + tau);
delta[2] = -tau;
work[1] = d__[1] + tau + d__[2];
work[2] = d__[2] * 2.f + tau;
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP */
}
return 0;
/* End of SLASD5 */
} /* slasd5_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -