📄 zgesdd.c
字号:
anrm = zlange_("M", m, n, &a[a_offset], lda, dum);
iscl = 0;
if (anrm > 0. && anrm < smlnum) {
iscl = 1;
latime_1.ops += (doublereal) (*m * 6 * *n);
zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
ierr);
} else if (anrm > bignum) {
iscl = 1;
latime_1.ops += (doublereal) (*m * 6 * *n);
zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
ierr);
}
if (*m >= *n) {
/* A has at least as many rows as columns. If A has sufficiently
more rows than columns, first reduce using the QR
decomposition (if sufficient workspace available) */
if (*m >= mnthr1) {
if (wntqn) {
/* Path 1 (M much larger than N, JOBZ='N')
No singular vectors to be computed */
itau = 1;
nwork = itau + *n;
/* Compute A=Q*R
(CWorkspace: need 2*N, prefer N+N*NB)
(RWorkspace: need 0) */
nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEQRF", m, n, &c__0, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
i__1, &ierr);
/* Zero out below R */
i__1 = *n - 1;
i__2 = *n - 1;
zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a_ref(2, 1), lda);
ie = 1;
itauq = 1;
itaup = itauq + *n;
nwork = itaup + *n;
/* Bidiagonalize R in A
(CWorkspace: need 3*N, prefer 2*N+2*N*NB)
(RWorkspace: need N) */
nb = ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEBRD", n, n, &c__0, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
itauq], &work[itaup], &work[nwork], &i__1, &ierr);
nrwork = ie + *n;
/* Perform bidiagonal SVD, compute singular values only
(CWorkspace: 0)
(RWorkspace: need BDSPAC) */
dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
} else if (wntqo) {
/* Path 2 (M much larger than N, JOBZ='O')
N left singular vectors to be overwritten on A and
N right singular vectors to be computed in VT */
iu = 1;
/* WORK(IU) is N by N */
ldwrku = *n;
ir = iu + ldwrku * *n;
if (*lwork >= *m * *n + *n * *n + *n * 3) {
/* WORK(IR) is M by N */
ldwrkr = *m;
} else {
ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
}
itau = ir + ldwrkr * *n;
nwork = itau + *n;
/* Compute A=Q*R
(CWorkspace: need N*N+2*N, prefer M*N+N+N*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEQRF", m, n, &c__0, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
i__1, &ierr);
/* Copy R to WORK( IR ), zeroing out below it */
zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
i__1 = *n - 1;
i__2 = *n - 1;
zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &work[ir + 1], &
ldwrkr);
/* Generate Q in A
(CWorkspace: need 2*N, prefer N+N*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZUNGQR", " ", m, n, n, &c_n1, (ftnlen)6,
(ftnlen)1);
latime_1.ops += dopla_("ZUNGQR", m, n, n, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
&i__1, &ierr);
ie = 1;
itauq = itau;
itaup = itauq + *n;
nwork = itaup + *n;
/* Bidiagonalize R in WORK(IR)
(CWorkspace: need N*N+3*N, prefer M*N+2*N+2*N*NB)
(RWorkspace: need N) */
nb = ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEBRD", n, n, &c__0, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
itauq], &work[itaup], &work[nwork], &i__1, &ierr);
/* Perform bidiagonal SVD, computing left singular vectors
of R in WORK(IRU) and computing right singular vectors
of R in WORK(IRVT)
(CWorkspace: need 0)
(RWorkspace: need BDSPAC) */
iru = ie + *n;
irvt = iru + *n * *n;
nrwork = irvt + *n * *n;
dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
info);
/* Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
Overwrite WORK(IU) by the left singular vectors of R
(CWorkspace: need 2*N*N+3*N, prefer M*N+N*N+2*N+N*NB)
(RWorkspace: 0) */
zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
nb = ilaenv_(&c__1, "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)
6, (ftnlen)3);
latime_1.ops += dopla2_("ZUNMBR", "QLN", n, n, n, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
itauq], &work[iu], &ldwrku, &work[nwork], &i__1, &
ierr);
/* Copy real matrix RWORK(IRVT) to complex matrix VT
Overwrite VT by the right singular vectors of R
(CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
(RWorkspace: 0) */
zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
nb = ilaenv_(&c__1, "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)
6, (ftnlen)3);
latime_1.ops += dopla2_("ZUNMBR", "PRC", n, n, n, &c__0, &nb);
i__1 = *lwork - nwork + 1;
zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
ierr);
/* Multiply Q in A by left singular vectors of R in
WORK(IU), storing result in WORK(IR) and copying to A
(CWorkspace: need 2*N*N, prefer N*N+M*N)
(RWorkspace: 0) */
i__1 = *m;
i__2 = ldwrkr;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
i__2) {
/* Computing MIN */
i__3 = *m - i__ + 1;
chunk = min(i__3,ldwrkr);
latime_1.ops += dopbl3_("ZGEMM ", &chunk, n, n)
;
zgemm_("N", "N", &chunk, n, n, &c_b2, &a_ref(i__, 1), lda,
&work[iu], &ldwrku, &c_b1, &work[ir], &ldwrkr);
zlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a_ref(i__, 1)
, lda);
/* L10: */
}
} else if (wntqs) {
/* Path 3 (M much larger than N, JOBZ='S')
N left singular vectors to be computed in U and
N right singular vectors to be computed in VT */
ir = 1;
/* WORK(IR) is N by N */
ldwrkr = *n;
itau = ir + ldwrkr * *n;
nwork = itau + *n;
/* Compute A=Q*R
(CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEQRF", m, n, &c__0, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
i__2, &ierr);
/* Copy R to WORK(IR), zeroing out below it */
zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
i__2 = *n - 1;
i__1 = *n - 1;
zlaset_("L", &i__2, &i__1, &c_b1, &c_b1, &work[ir + 1], &
ldwrkr);
/* Generate Q in A
(CWorkspace: need 2*N, prefer N+N*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZUNGQR", " ", m, n, n, &c_n1, (ftnlen)6,
(ftnlen)1);
latime_1.ops += dopla_("ZUNGQR", m, n, n, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
&i__2, &ierr);
ie = 1;
itauq = itau;
itaup = itauq + *n;
nwork = itaup + *n;
/* Bidiagonalize R in WORK(IR)
(CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
(RWorkspace: need N) */
nb = ilaenv_(&c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEBRD", n, n, &c__0, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
itauq], &work[itaup], &work[nwork], &i__2, &ierr);
/* Perform bidiagonal SVD, computing left singular vectors
of bidiagonal matrix in RWORK(IRU) and computing right
singular vectors of bidiagonal matrix in RWORK(IRVT)
(CWorkspace: need 0)
(RWorkspace: need BDSPAC) */
iru = ie + *n;
irvt = iru + *n * *n;
nrwork = irvt + *n * *n;
dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
info);
/* Copy real matrix RWORK(IRU) to complex matrix U
Overwrite U by left singular vectors of R
(CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
(RWorkspace: 0) */
zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
nb = ilaenv_(&c__1, "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)
6, (ftnlen)3);
latime_1.ops += dopla2_("ZUNMBR", "QLN", n, n, n, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
/* Copy real matrix RWORK(IRVT) to complex matrix VT
Overwrite VT by right singular vectors of R
(CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
(RWorkspace: 0) */
zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
nb = ilaenv_(&c__1, "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)
6, (ftnlen)3);
latime_1.ops += dopla2_("ZUNMBR", "PRC", n, n, n, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
ierr);
/* Multiply Q in A by left singular vectors of R in
WORK(IR), storing result in U
(CWorkspace: need N*N)
(RWorkspace: 0) */
zlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
latime_1.ops += dopbl3_("ZGEMM ", m, n, n);
zgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &work[ir],
&ldwrkr, &c_b1, &u[u_offset], ldu);
} else if (wntqa) {
/* Path 4 (M much larger than N, JOBZ='A')
M left singular vectors to be computed in U and
N right singular vectors to be computed in VT */
iu = 1;
/* WORK(IU) is N by N */
ldwrku = *n;
itau = iu + ldwrku * *n;
nwork = itau + *n;
/* Compute A=Q*R, copying result to U
(CWorkspace: need 2*N, prefer N+N*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
ftnlen)6, (ftnlen)1);
latime_1.ops += dopla_("ZGEQRF", m, n, &c__0, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
i__2, &ierr);
zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
/* Generate Q in U
(CWorkspace: need N+M, prefer N+M*NB)
(RWorkspace: 0) */
nb = ilaenv_(&c__1, "ZUNGQR", " ", m, m, n, &c_n1, (ftnlen)6,
(ftnlen)1);
latime_1.ops += dopla_("ZUNGQR", m, m, n, &c__0, &nb);
i__2 = *lwork - nwork + 1;
zungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
&i__2, &ierr);
/* Produce R in A, zeroing out below it */
i__2 = *n - 1;
i__1 = *n - 1;
zlaset_("L", &i__2, &i__1, &c_b1, &c_b1, &a_ref(2, 1), lda);
ie = 1;
itauq = itau;
itaup = itauq + *n;
nwork = itaup + *n;
/* Bidiagonalize R in A
(CWorkspace: need 3*N, prefer 2*N+2*N*NB)
(RWorkspace: need N) */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -