⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgesdd.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 5 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;

/* Subroutine */ int zgesdd_(char *jobz, integer *m, integer *n, 
	doublecomplex *a, integer *lda, doublereal *s, doublecomplex *u, 
	integer *ldu, doublecomplex *vt, integer *ldvt, doublecomplex *work, 
	integer *lwork, doublereal *rwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
	    i__2, i__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer iscl;
    static doublereal anrm;
    static integer idum[1], ierr, itau, irvt, i__;
    extern doublereal dopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern logical lsame_(char *, char *);
    static integer chunk, minmn;
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    static integer itaup, itauq, wrkbl;
    static logical wntqa;
    static integer nwork;
    static logical wntqn, wntqo, wntqs;
    extern doublereal dopla2_(char *, char *, integer *, integer *, integer *,
	     integer *, integer *), dopbl3_(char *, integer *,
	     integer *, integer *);
    extern /* Subroutine */ int zlacp2_(char *, integer *, integer *, 
	    doublereal *, integer *, doublecomplex *, integer *);
    static integer mnthr1, mnthr2, ie, nb;
    extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *,
	     doublereal *, integer *, doublereal *, integer *, integer *);
    static integer il;
    extern doublereal dlamch_(char *);
    static integer ir, iu;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), xerbla_(char *, integer *),
	     zgebrd_(integer *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublecomplex *, 
	    doublecomplex *, integer *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static doublereal bignum;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zgelqf_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
	    ), zlacrm_(integer *, integer *, doublecomplex *, integer *, 
	    doublereal *, integer *, doublecomplex *, integer *, doublereal *)
	    , zlarcm_(integer *, integer *, doublereal *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *), zlascl_(char *, integer *, integer *, doublereal *,
	     doublereal *, integer *, integer *, doublecomplex *, integer *, 
	    integer *), zgeqrf_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
	    );
    static integer ldwrkl;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *);
    static integer ldwrkr, minwrk, ldwrku, maxwrk;
    extern /* Subroutine */ int zungbr_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static integer ldwkvt;
    static doublereal smlnum;
    static logical wntqas;
    extern /* Subroutine */ int zunmbr_(char *, char *, char *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
	    ), zunglq_(integer *, integer *, integer *
	    , doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static logical lquery;
    static integer nrwork;
    extern /* Subroutine */ int zungqr_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static integer blk;
    static doublereal dum[1], eps;
    static integer iru, ivt;


#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1
#define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)]
#define vt_subscr(a_1,a_2) (a_2)*vt_dim1 + a_1
#define vt_ref(a_1,a_2) vt[vt_subscr(a_1,a_2)]


/*  -- LAPACK driver routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

    ZGESDD computes the singular value decomposition (SVD) of a complex   
    M-by-N matrix A, optionally computing the left and/or right singular   
    vectors, by using divide-and-conquer method. The SVD is written   

         A = U * SIGMA * conjugate-transpose(V)   

    where SIGMA is an M-by-N matrix which is zero except for its   
    min(m,n) diagonal elements, U is an M-by-M unitary matrix, and   
    V is an N-by-N unitary matrix.  The diagonal elements of SIGMA   
    are the singular values of A; they are real and non-negative, and   
    are returned in descending order.  The first min(m,n) columns of   
    U and V are the left and right singular vectors of A.   

    Note that the routine returns VT = V**H, not V.   

    The divide and conquer algorithm makes very mild assumptions about   
    floating point arithmetic. It will work on machines with a guard   
    digit in add/subtract, or on those binary machines without guard   
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or   
    Cray-2. It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            Specifies options for computing all or part of the matrix U:   
            = 'A':  all M columns of U and all N rows of V**H are   
                    returned in the arrays U and VT;   
            = 'S':  the first min(M,N) columns of U and the first   
                    min(M,N) rows of V**H are returned in the arrays U   
                    and VT;   
            = 'O':  If M >= N, the first N columns of U are overwritten   
                    on the array A and all rows of V**H are returned in   
                    the array VT;   
                    otherwise, all columns of U are returned in the   
                    array U and the first M rows of V**H are overwritten   
                    in the array VT;   
            = 'N':  no columns of U or rows of V**H are computed.   

    M       (input) INTEGER   
            The number of rows of the input matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the input matrix A.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit,   
            if JOBZ = 'O',  A is overwritten with the first N columns   
                            of U (the left singular vectors, stored   
                            columnwise) if M >= N;   
                            A is overwritten with the first M rows   
                            of V**H (the right singular vectors, stored   
                            rowwise) otherwise.   
            if JOBZ .ne. 'O', the contents of A are destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    S       (output) DOUBLE PRECISION array, dimension (min(M,N))   
            The singular values of A, sorted so that S(i) >= S(i+1).   

    U       (output) COMPLEX*16 array, dimension (LDU,UCOL)   
            UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;   
            UCOL = min(M,N) if JOBZ = 'S'.   
            If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M   
            unitary matrix U;   
            if JOBZ = 'S', U contains the first min(M,N) columns of U   
            (the left singular vectors, stored columnwise);   
            if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.   

    LDU     (input) INTEGER   
            The leading dimension of the array U.  LDU >= 1; if   
            JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.   

    VT      (output) COMPLEX*16 array, dimension (LDVT,N)   
            If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the   
            N-by-N unitary matrix V**H;   
            if JOBZ = 'S', VT contains the first min(M,N) rows of   
            V**H (the right singular vectors, stored rowwise);   
            if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.   

    LDVT    (input) INTEGER   
            The leading dimension of the array VT.  LDVT >= 1; if   
            JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;   
            if JOBZ = 'S', LDVT >= min(M,N).   

    WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= 1.   
            if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).   
            if JOBZ = 'O',   
                  LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).   
            if JOBZ = 'S' or 'A',   
                  LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).   
            For good performance, LWORK should generally be larger.   
            If LWORK < 0 but other input arguments are legal, WORK(1)   
            returns the optimal LWORK.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (LRWORK)   
            If JOBZ = 'N', LRWORK >= 7*min(M,N).   
            Otherwise, LRWORK >= 5*min(M,N)*min(M,N) + 5*min(M,N)   

    IWORK   (workspace) INTEGER array, dimension (8*min(M,N))   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The updating process of DBDSDC did not converge.   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Huan Ren, Computer Science Division, University of   
       California at Berkeley, USA   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --s;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1 * 1;
    vt -= vt_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    mnthr1 = (integer) (minmn * 17. / 9.);
    mnthr2 = (integer) (minmn * 5. / 3.);
    wntqa = lsame_(jobz, "A");
    wntqs = lsame_(jobz, "S");
    wntqas = wntqa || wntqs;
    wntqo = lsame_(jobz, "O");
    wntqn = lsame_(jobz, "N");
    minwrk = 1;
    maxwrk = 1;
    lquery = *lwork == -1;

    if (! (wntqa || wntqs || wntqo || wntqn)) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
	    m) {
	*info = -8;
    } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || 
	    wntqo && *m >= *n && *ldvt < *n) {
	*info = -10;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         CWorkspace refers to complex workspace, and RWorkspace to   
         real workspace. NB refers to the optimal block size for the   
         immediately following subroutine, as returned by ILAENV.) */

    if (*info == 0 && *m > 0 && *n > 0) {
	if (*m >= *n) {

/*           There is no complex work space needed for bidiagonal SVD   
             The real work space needed for bidiagonal SVD is BDSPAC,   
             BDSPAC = 3*N*N + 4*N */

	    if (*m >= mnthr1) {
		if (wntqn) {

/*                 Path 1 (M much larger than N, JOBZ='N') */

		    wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(&
			    c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
			    6, (ftnlen)1);
		    wrkbl = max(i__1,i__2);
		    maxwrk = wrkbl;
		    minwrk = *n * 3;
		} else if (wntqo) {

/*                 Path 2 (M much larger than N, JOBZ='O') */

		    wrkbl = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", m, n, &
			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR", 
			    " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = (*n << 1) + (*n << 1) * ilaenv_(&
			    c__1, "ZGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
			    6, (ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, 
			    "ZUNMBR", "QLN", n, n, n, &c_n1, (ftnlen)6, (
			    ftnlen)3);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = (*n << 1) + *n * ilaenv_(&c__1, 
			    "ZUNMBR", "PRC", n, n, n, &c_n1, (ftnlen)6, (
			    ftnlen)3);
		    wrkbl = max(i__1,i__2);
		    maxwrk = *m * *n + *n * *n + wrkbl;
		    minwrk = (*n << 1) * *n + *n * 3;
		} else if (wntqs) {

/*                 Path 3 (M much larger than N, JOBZ='S') */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -