⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slasd1.c

📁 提供矩阵类的函数库
💻 C
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    real ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static integer c__0 = 0;
static real c_b7 = 1.f;
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int slasd1_(integer *nl, integer *nr, integer *sqre, real *
	d__, real *alpha, real *beta, real *u, integer *ldu, real *vt, 
	integer *ldvt, integer *idxq, integer *iwork, real *work, integer *
	info)
{
    /* System generated locals */
    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
    real r__1, r__2;

    /* Local variables */
    static integer idxc, idxp, ldvt2, i__, k, m, n, n1, n2;
    extern /* Subroutine */ int slasd2_(integer *, integer *, integer *, 
	    integer *, real *, real *, real *, real *, real *, integer *, 
	    real *, integer *, real *, real *, integer *, real *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *),
	     slasd3_(integer *, integer *, integer *, integer *, real *, real 
	    *, integer *, real *, real *, integer *, real *, integer *, real *
	    , integer *, real *, integer *, integer *, integer *, real *, 
	    integer *);
    static integer iq, iz, isigma;
    extern /* Subroutine */ int xerbla_(char *, integer *), slascl_(
	    char *, integer *, integer *, real *, real *, integer *, integer *
	    , real *, integer *, integer *), slamrg_(integer *, 
	    integer *, real *, integer *, integer *, integer *);
    static real orgnrm;
    static integer coltyp, iu2, ldq, idx, ldu2, ivt2;


/*  -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    SLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,   
    where N = NL + NR + 1 and M = N + SQRE. SLASD1 is called from SLASD0.   

    A related subroutine SLASD7 handles the case in which the singular   
    values (and the singular vectors in factored form) are desired.   

    SLASD1 computes the SVD as follows:   

                  ( D1(in)  0    0     0 )   
      B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)   
                  (   0     0   D2(in) 0 )   

        = U(out) * ( D(out) 0) * VT(out)   

    where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M   
    with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros   
    elsewhere; and the entry b is empty if SQRE = 0.   

    The left singular vectors of the original matrix are stored in U, and   
    the transpose of the right singular vectors are stored in VT, and the   
    singular values are in D.  The algorithm consists of three stages:   

       The first stage consists of deflating the size of the problem   
       when there are multiple singular values or when there are zeros in   
       the Z vector.  For each such occurence the dimension of the   
       secular equation problem is reduced by one.  This stage is   
       performed by the routine SLASD2.   

       The second stage consists of calculating the updated   
       singular values. This is done by finding the square roots of the   
       roots of the secular equation via the routine SLASD4 (as called   
       by SLASD3). This routine also calculates the singular vectors of   
       the current problem.   

       The final stage consists of computing the updated singular vectors   
       directly using the updated singular values.  The singular vectors   
       for the current problem are multiplied with the singular vectors   
       from the overall problem.   

    Arguments   
    =========   

    NL     (input) INTEGER   
           The row dimension of the upper block.  NL >= 1.   

    NR     (input) INTEGER   
           The row dimension of the lower block.  NR >= 1.   

    SQRE   (input) INTEGER   
           = 0: the lower block is an NR-by-NR square matrix.   
           = 1: the lower block is an NR-by-(NR+1) rectangular matrix.   

           The bidiagonal matrix has row dimension N = NL + NR + 1,   
           and column dimension M = N + SQRE.   

    D      (input/output) REAL array,   
                          dimension (N = NL+NR+1).   
           On entry D(1:NL,1:NL) contains the singular values of the   
           upper block; and D(NL+2:N) contains the singular values of   
           the lower block. On exit D(1:N) contains the singular values   
           of the modified matrix.   

    ALPHA  (input) REAL   
           Contains the diagonal element associated with the added row.   

    BETA   (input) REAL   
           Contains the off-diagonal element associated with the added   
           row.   

    U      (input/output) REAL array, dimension(LDU,N)   
           On entry U(1:NL, 1:NL) contains the left singular vectors of   
           the upper block; U(NL+2:N, NL+2:N) contains the left singular   
           vectors of the lower block. On exit U contains the left   
           singular vectors of the bidiagonal matrix.   

    LDU    (input) INTEGER   
           The leading dimension of the array U.  LDU >= max( 1, N ).   

    VT     (input/output) REAL array, dimension(LDVT,M)   
           where M = N + SQRE.   
           On entry VT(1:NL+1, 1:NL+1)' contains the right singular   
           vectors of the upper block; VT(NL+2:M, NL+2:M)' contains   
           the right singular vectors of the lower block. On exit   
           VT' contains the right singular vectors of the   
           bidiagonal matrix.   

    LDVT   (input) INTEGER   
           The leading dimension of the array VT.  LDVT >= max( 1, M ).   

    IDXQ  (output) INTEGER array, dimension(N)   
           This contains the permutation which will reintegrate the   
           subproblem just solved back into sorted order, i.e.   
           D( IDXQ( I = 1, N ) ) will be in ascending order.   

    IWORK  (workspace) INTEGER array, dimension( 4 * N )   

    WORK   (workspace) REAL array, dimension( 3*M**2 + 2*M )   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = 1, an singular value did not converge   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Huan Ren, Computer Science Division, University of   
       California at Berkeley, USA   

    =====================================================================   



       Test the input parameters.   

       Parameter adjustments */
    --d__;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1 * 1;
    vt -= vt_offset;
    --idxq;
    --iwork;
    --work;

    /* Function Body */
    *info = 0;

    if (*nl < 1) {
	*info = -1;
    } else if (*nr < 1) {
	*info = -2;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLASD1", &i__1);
	return 0;
    }

    n = *nl + *nr + 1;
    m = n + *sqre;

/*     The following values are for bookkeeping purposes only.  They are   
       integer pointers which indicate the portion of the workspace   
       used by a particular array in SLASD2 and SLASD3. */

    ldu2 = n;
    ldvt2 = m;

    iz = 1;
    isigma = iz + m;
    iu2 = isigma + n;
    ivt2 = iu2 + ldu2 * n;
    iq = ivt2 + ldvt2 * m;

    idx = 1;
    idxc = idx + n;
    coltyp = idxc + n;
    idxp = coltyp + n;

/*     Scale.   

   Computing MAX */
    r__1 = dabs(*alpha), r__2 = dabs(*beta);
    orgnrm = dmax(r__1,r__2);
    d__[*nl + 1] = 0.f;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if ((r__1 = d__[i__], dabs(r__1)) > orgnrm) {
	    orgnrm = (r__1 = d__[i__], dabs(r__1));
	}
/* L10: */
    }
    latime_1.ops += (real) (n + 2);
    slascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
    *alpha /= orgnrm;
    *beta /= orgnrm;

/*     Deflate singular values. */

    slasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset], 
	    ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
	    work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
	    idxq[1], &iwork[coltyp], info);

/*     Solve Secular Equation and update singular vectors. */

    ldq = k;
    slasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
	    u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
	    ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
    if (*info != 0) {
	return 0;
    }

/*     Unscale. */

    latime_1.ops += (real) n;
    slascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);

/*     Prepare the IDXQ sorting permutation. */

    n1 = k;
    n2 = n - k;
    slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);

    return 0;

/*     End of SLASD1 */

} /* slasd1_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -