⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgesdd.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 5 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static doublereal c_b235 = 0.;
static doublereal c_b301 = 1.;

/* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal *
	a, integer *lda, doublereal *s, doublereal *u, integer *ldu, 
	doublereal *vt, integer *ldvt, doublereal *work, integer *lwork, 
	integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
	    i__2, i__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer iscl;
    static doublereal anrm;
    static integer idum[1], ierr, itau, i__;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern doublereal dopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern logical lsame_(char *, char *);
    static integer chunk, minmn, itaup, itauq, wrkbl, mnthr;
    static logical wntqa;
    static integer nwork;
    static logical wntqn, wntqo, wntqs;
    extern doublereal dopla2_(char *, char *, integer *, integer *, integer *,
	     integer *, integer *), dopbl3_(char *, integer *,
	     integer *, integer *);
    static integer ie, nb;
    extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *,
	     doublereal *, integer *, doublereal *, integer *, integer *);
    static integer il;
    extern /* Subroutine */ int dgebrd_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *);
    static integer ir, bdspac;
    extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    static integer iu;
    extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), 
	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *),
	     dgeqrf_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dorgbr_(char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static doublereal bignum;
    extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
	     integer *, doublereal *, doublereal *, integer *, integer *);
    static integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
    static doublereal smlnum;
    static logical wntqas, lquery;
    static integer blk;
    static doublereal dum[1], eps;
    static integer ivt;


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1]


/*  -- LAPACK driver routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

    DGESDD computes the singular value decomposition (SVD) of a real   
    M-by-N matrix A, optionally computing the left and right singular   
    vectors.  If singular vectors are desired, it uses a   
    divide-and-conquer algorithm.   

    The SVD is written   

         A = U * SIGMA * transpose(V)   

    where SIGMA is an M-by-N matrix which is zero except for its   
    min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and   
    V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA   
    are the singular values of A; they are real and non-negative, and   
    are returned in descending order.  The first min(m,n) columns of   
    U and V are the left and right singular vectors of A.   

    Note that the routine returns VT = V**T, not V.   

    The divide and conquer algorithm makes very mild assumptions about   
    floating point arithmetic. It will work on machines with a guard   
    digit in add/subtract, or on those binary machines without guard   
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or   
    Cray-2. It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            Specifies options for computing all or part of the matrix U:   
            = 'A':  all M columns of U and all N rows of V**T are   
                    returned in the arrays U and VT;   
            = 'S':  the first min(M,N) columns of U and the first   
                    min(M,N) rows of V**T are returned in the arrays U   
                    and VT;   
            = 'O':  If M >= N, the first N columns of U are overwritten   
                    on the array A and all rows of V**T are returned in   
                    the array VT;   
                    otherwise, all columns of U are returned in the   
                    array U and the first M rows of V**T are overwritten   
                    in the array VT;   
            = 'N':  no columns of U or rows of V**T are computed.   

    M       (input) INTEGER   
            The number of rows of the input matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the input matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit,   
            if JOBZ = 'O',  A is overwritten with the first N columns   
                            of U (the left singular vectors, stored   
                            columnwise) if M >= N;   
                            A is overwritten with the first M rows   
                            of V**T (the right singular vectors, stored   
                            rowwise) otherwise.   
            if JOBZ .ne. 'O', the contents of A are destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    S       (output) DOUBLE PRECISION array, dimension (min(M,N))   
            The singular values of A, sorted so that S(i) >= S(i+1).   

    U       (output) DOUBLE PRECISION array, dimension (LDU,UCOL)   
            UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;   
            UCOL = min(M,N) if JOBZ = 'S'.   
            If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M   
            orthogonal matrix U;   
            if JOBZ = 'S', U contains the first min(M,N) columns of U   
            (the left singular vectors, stored columnwise);   
            if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.   

    LDU     (input) INTEGER   
            The leading dimension of the array U.  LDU >= 1; if   
            JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.   

    VT      (output) DOUBLE PRECISION array, dimension (LDVT,N)   
            If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the   
            N-by-N orthogonal matrix V**T;   
            if JOBZ = 'S', VT contains the first min(M,N) rows of   
            V**T (the right singular vectors, stored rowwise);   
            if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.   

    LDVT    (input) INTEGER   
            The leading dimension of the array VT.  LDVT >= 1; if   
            JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;   
            if JOBZ = 'S', LDVT >= min(M,N).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK;   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= 1.   
            If JOBZ = 'N',   
              LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).   
            If JOBZ = 'O',   
              LWORK >= 3*min(M,N)*min(M,N) +   
                       max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).   
            If JOBZ = 'S' or 'A'   
              LWORK >= 3*min(M,N)*min(M,N) +   
                       max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).   
            For good performance, LWORK should generally be larger.   
            If LWORK < 0 but other input arguments are legal, WORK(1)   
            returns the optimal LWORK.   

    IWORK   (workspace) INTEGER array, dimension (8*min(M,N))   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  DBDSDC did not converge, updating process failed.   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Huan Ren, Computer Science Division, University of   
       California at Berkeley, USA   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --s;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    vt_dim1 = *ldvt;
    vt_offset = 1 + vt_dim1 * 1;
    vt -= vt_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    mnthr = (integer) (minmn * 11. / 6.);
    wntqa = lsame_(jobz, "A");
    wntqs = lsame_(jobz, "S");
    wntqas = wntqa || wntqs;
    wntqo = lsame_(jobz, "O");
    wntqn = lsame_(jobz, "N");
    minwrk = 1;
    maxwrk = 1;
    lquery = *lwork == -1;

    if (! (wntqa || wntqs || wntqo || wntqn)) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
	    m) {
	*info = -8;
    } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || 
	    wntqo && *m >= *n && *ldvt < *n) {
	*info = -10;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.) */

    if (*info == 0 && *m > 0 && *n > 0) {
	if (*m >= *n) {

/*           Compute space needed for DBDSDC */

	    if (wntqn) {
		bdspac = *n * 7;
	    } else {
		bdspac = *n * 3 * *n + (*n << 2);
	    }
	    if (*m >= mnthr) {
		if (wntqn) {

/*                 Path 1 (M much larger than N, JOBZ='N') */

		    wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, 
			    "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
			    ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = bdspac + *n;
		    maxwrk = max(i__1,i__2);
		    minwrk = bdspac + *n;
		} else if (wntqo) {

/*                 Path 2 (M much larger than N, JOBZ='O') */

		    wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR", 
			    " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, 
			    "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
			    ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
			    , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
			    , "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = bdspac + *n * 3;
		    wrkbl = max(i__1,i__2);
		    maxwrk = wrkbl + (*n << 1) * *n;
		    minwrk = bdspac + (*n << 1) * *n + *n * 3;
		} else if (wntqs) {

/*                 Path 3 (M much larger than N, JOBZ='S') */

		    wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR", 
			    " ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1, 
			    "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
			    ftnlen)1);
		    wrkbl = max(i__1,i__2);
/* Computing MAX */
		    i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
			    , "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
		    wrkbl = max(i__1,i__2);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -