📄 dgesdd.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static doublereal c_b235 = 0.;
static doublereal c_b301 = 1.;
/* Subroutine */ int dgesdd_(char *jobz, integer *m, integer *n, doublereal *
a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
i__2, i__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static integer iscl;
static doublereal anrm;
static integer idum[1], ierr, itau, i__;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *);
extern doublereal dopla_(char *, integer *, integer *, integer *, integer
*, integer *);
extern logical lsame_(char *, char *);
static integer chunk, minmn, itaup, itauq, wrkbl, mnthr;
static logical wntqa;
static integer nwork;
static logical wntqn, wntqo, wntqs;
extern doublereal dopla2_(char *, char *, integer *, integer *, integer *,
integer *, integer *), dopbl3_(char *, integer *,
integer *, integer *);
static integer ie, nb;
extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal
*, doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *);
static integer il;
extern /* Subroutine */ int dgebrd_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *, integer *);
extern doublereal dlamch_(char *);
static integer ir, bdspac;
extern doublereal dlange_(char *, integer *, integer *, doublereal *,
integer *, doublereal *);
static integer iu;
extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *),
dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
integer *, integer *, doublereal *, integer *, integer *),
dgeqrf_(integer *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *), dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *),
xerbla_(char *, integer *), dorgbr_(char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
static doublereal bignum;
extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *);
static integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
static doublereal smlnum;
static logical wntqas, lquery;
static integer blk;
static doublereal dum[1], eps;
static integer ivt;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1]
/* -- LAPACK driver routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1999
Purpose
=======
DGESDD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and right singular
vectors. If singular vectors are desired, it uses a
divide-and-conquer algorithm.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Arguments
=========
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array VT;
= 'N': no columns of U or rows of V**T are computed.
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
S (output) DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK < 0 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: DBDSDC did not converge, updating process failed.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Test the input arguments
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--s;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
vt_dim1 = *ldvt;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
minmn = min(*m,*n);
mnthr = (integer) (minmn * 11. / 6.);
wntqa = lsame_(jobz, "A");
wntqs = lsame_(jobz, "S");
wntqas = wntqa || wntqs;
wntqo = lsame_(jobz, "O");
wntqn = lsame_(jobz, "N");
minwrk = 1;
maxwrk = 1;
lquery = *lwork == -1;
if (! (wntqa || wntqs || wntqo || wntqn)) {
*info = -1;
} else if (*m < 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
} else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
m) {
*info = -8;
} else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
wntqo && *m >= *n && *ldvt < *n) {
*info = -10;
}
/* Compute workspace
(Note: Comments in the code beginning "Workspace:" describe the
minimal amount of workspace needed at that point in the code,
as well as the preferred amount for good performance.
NB refers to the optimal block size for the immediately
following subroutine, as returned by ILAENV.) */
if (*info == 0 && *m > 0 && *n > 0) {
if (*m >= *n) {
/* Compute space needed for DBDSDC */
if (wntqn) {
bdspac = *n * 7;
} else {
bdspac = *n * 3 * *n + (*n << 2);
}
if (*m >= mnthr) {
if (wntqn) {
/* Path 1 (M much larger than N, JOBZ='N') */
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1,
"DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = bdspac + *n;
maxwrk = max(i__1,i__2);
minwrk = bdspac + *n;
} else if (wntqo) {
/* Path 2 (M much larger than N, JOBZ='O') */
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
" ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1,
"DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
, "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
, "PRT", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = bdspac + *n * 3;
wrkbl = max(i__1,i__2);
maxwrk = wrkbl + (*n << 1) * *n;
minwrk = bdspac + (*n << 1) * *n + *n * 3;
} else if (wntqs) {
/* Path 3 (M much larger than N, JOBZ='S') */
wrkbl = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
" ", m, n, n, &c_n1, (ftnlen)6, (ftnlen)1);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * ilaenv_(&c__1,
"DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
wrkbl = max(i__1,i__2);
/* Computing MAX */
i__1 = wrkbl, i__2 = *n * 3 + *n * ilaenv_(&c__1, "DORMBR"
, "QLN", n, n, n, &c_n1, (ftnlen)6, (ftnlen)3);
wrkbl = max(i__1,i__2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -