📄 ctgevc.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int ctgevc_(char *side, char *howmny, logical *select,
integer *n, complex *a, integer *lda, complex *b, integer *ldb,
complex *vl, integer *ldvl, complex *vr, integer *ldvr, integer *mm,
integer *m, complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
vr_offset, i__1, i__2, i__3, i__4, i__5;
real r__1, r__2, r__3, r__4, r__5, r__6;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
double r_imag(complex *);
void r_cnjg(complex *, complex *);
/* Local variables */
static integer ibeg, ieig, iend;
static real dmin__;
static integer isrc;
static real temp;
static complex suma, sumb;
static real xmax;
static complex d__;
static integer i__, j;
static real scale;
static logical ilall;
static integer iside;
static real sbeta;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
static real small;
static logical compl;
static real anorm, bnorm;
static logical compr;
static integer iopst;
static complex ca, cb;
static logical ilbbad;
static real acoefa;
static integer je;
static real bcoefa, acoeff;
static complex bcoeff;
static logical ilback;
static integer im;
extern /* Subroutine */ int slabad_(real *, real *);
static real ascale, bscale;
static integer jr;
extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
extern doublereal slamch_(char *);
static complex salpha;
static real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
static real bignum;
static logical ilcomp;
static integer ihwmny;
static real big;
static logical lsa, lsb;
static real ulp;
static complex sum;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1
#define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)]
#define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1
#define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
----------------------- Begin Timing Code ------------------------
Common block to return operation count and iteration count
ITCNT is initialized to 0, OPS is only incremented
OPST is used to accumulate small contributions to OPS
to avoid roundoff error
------------------------ End Timing Code -------------------------
Purpose
=======
CTGEVC computes some or all of the right and/or left generalized
eigenvectors of a pair of complex upper triangular matrices (A,B).
The right generalized eigenvector x and the left generalized
eigenvector y of (A,B) corresponding to a generalized eigenvalue
w are defined by:
(A - wB) * x = 0 and y**H * (A - wB) = 0
where y**H denotes the conjugate tranpose of y.
If an eigenvalue w is determined by zero diagonal elements of both A
and B, a unit vector is returned as the corresponding eigenvector.
If all eigenvectors are requested, the routine may either return
the matrices X and/or Y of right or left eigenvectors of (A,B), or
the products Z*X and/or Q*Y, where Z and Q are input unitary
matrices. If (A,B) was obtained from the generalized Schur
factorization of an original pair of matrices
(A0,B0) = (Q*A*Z**H,Q*B*Z**H),
then Z*X and Q*Y are the matrices of right or left eigenvectors of
A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors, and
backtransform them using the input matrices supplied
in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed.
If HOWMNY='A' or 'B', SELECT is not referenced.
To select the eigenvector corresponding to the j-th
eigenvalue, SELECT(j) must be set to .TRUE..
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input) COMPLEX array, dimension (LDA,N)
The upper triangular matrix A.
LDA (input) INTEGER
The leading dimension of array A. LDA >= max(1,N).
B (input) COMPLEX array, dimension (LDB,N)
The upper triangular matrix B. B must have real diagonal
elements.
LDB (input) INTEGER
The leading dimension of array B. LDB >= max(1,N).
VL (input/output) COMPLEX array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the unitary matrix Q
of left Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (A,B);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (A,B) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) COMPLEX array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the unitary matrix Z
of right Schur vectors returned by CHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (A,B);
if HOWMNY = 'B', the matrix Z*X;
if HOWMNY = 'S', the right eigenvectors of (A,B) specified by
SELECT, stored consecutively in the columns of
VR, in the same order as their eigenvalues.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected eigenvector occupies one column.
WORK (workspace) COMPLEX array, dimension (2*N)
RWORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
Decode and Test the input parameters
Parameter adjustments */
--select;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
--rwork;
/* Function Body */
if (lsame_(howmny, "A")) {
ihwmny = 1;
ilall = TRUE_;
ilback = FALSE_;
} else if (lsame_(howmny, "S")) {
ihwmny = 2;
ilall = FALSE_;
ilback = FALSE_;
} else if (lsame_(howmny, "B") || lsame_(howmny,
"T")) {
ihwmny = 3;
ilall = TRUE_;
ilback = TRUE_;
} else {
ihwmny = -1;
}
if (lsame_(side, "R")) {
iside = 1;
compl = FALSE_;
compr = TRUE_;
} else if (lsame_(side, "L")) {
iside = 2;
compl = TRUE_;
compr = FALSE_;
} else if (lsame_(side, "B")) {
iside = 3;
compl = TRUE_;
compr = TRUE_;
} else {
iside = -1;
}
*info = 0;
if (iside < 0) {
*info = -1;
} else if (ihwmny < 0) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldb < max(1,*n)) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTGEVC", &i__1);
return 0;
}
/* Count the number of eigenvectors */
if (! ilall) {
im = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (select[j]) {
++im;
}
/* L10: */
}
} else {
im = *n;
}
/* Check diagonal of B */
ilbbad = FALSE_;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (r_imag(&b_ref(j, j)) != 0.f) {
ilbbad = TRUE_;
}
/* L20: */
}
if (ilbbad) {
*info = -7;
} else if (compl && *ldvl < *n || *ldvl < 1) {
*info = -10;
} else if (compr && *ldvr < *n || *ldvr < 1) {
*info = -12;
} else if (*mm < im) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTGEVC", &i__1);
return 0;
}
/* Quick return if possible */
*m = im;
if (*n == 0) {
return 0;
}
/* Machine Constants */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -