📄 sstedc.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__2 = 2;
static integer c__9 = 9;
static integer c__0 = 0;
static real c_b18 = 0.f;
static real c_b19 = 1.f;
static integer c__1 = 1;
/* Subroutine */ int sstedc_(char *compz, integer *n, real *d__, real *e,
real *z__, integer *ldz, real *work, integer *lwork, integer *iwork,
integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
real r__1, r__2;
/* Builtin functions */
double log(doublereal);
integer pow_ii(integer *, integer *);
double sqrt(doublereal);
/* Local variables */
static real tiny;
static integer i__, j, k, m;
static real p;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
integer *, real *, real *, integer *, real *, integer *, real *,
real *, integer *);
static integer lwmin, start;
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
integer *), slaed0_(integer *, integer *, integer *, real *, real
*, real *, integer *, real *, integer *, real *, integer *,
integer *);
static integer ii;
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *,
real *, integer *), slaset_(char *, integer *, integer *,
real *, real *, real *, integer *);
static integer liwmin, icompz;
static real orgnrm;
extern doublereal slanst_(char *, integer *, real *, real *);
extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *),
slasrt_(char *, integer *, real *, integer *);
static logical lquery;
static integer smlsiz;
extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
real *, integer *, real *, integer *);
static integer storez, strtrw, end, lgn;
static real eps;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
/* -- LAPACK driver routine (instrum. to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count and iteration count
ITCNT is initialized to 0, OPS is only incremented
Purpose
=======
SSTEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric matrix can also be
found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLAED3 for details.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix also.
= 'V': Compute eigenvectors of original dense symmetric
matrix also. On entry, Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LWORK must be at least
( 1 + 3*N + 2*N*lg N + 3*N**2 ),
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
If COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ).
If COMPZ = 'I' and N > 1 then LIWORK must be at least
( 3 + 5*N ).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1 || *liwork == -1;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (*n <= 1 || icompz <= 0) {
liwmin = 1;
lwmin = 1;
} else {
lgn = (integer) (log((real) (*n)) / log(2.f));
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
if (icompz == 1) {
/* Computing 2nd power */
i__1 = *n;
lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
liwmin = *n * 6 + 6 + *n * 5 * lgn;
} else if (icompz == 2) {
/* Computing 2nd power */
i__1 = *n;
lwmin = (*n << 2) + 1 + i__1 * i__1;
liwmin = *n * 5 + 3;
}
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
*info = -6;
} else if (*lwork < lwmin && ! lquery) {
*info = -8;
} else if (*liwork < liwmin && ! lquery) {
*info = -10;
}
if (*info == 0) {
work[1] = (real) lwmin;
iwork[1] = liwmin;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSTEDC", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
latime_1.itcnt = 0.f;
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz != 0) {
z___ref(1, 1) = 1.f;
}
return 0;
}
smlsiz = ilaenv_(&c__9, "SSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
ftnlen)6, (ftnlen)1);
/* If the following conditional clause is removed, then the routine
will use the Divide and Conquer routine to compute only the
eigenvalues, which requires (3N + 3N**2) real workspace and
(2 + 5N + 2N lg(N)) integer workspace.
Since on many architectures SSTERF is much faster than any other
algorithm for finding eigenvalues only, it is used here
as the default.
If COMPZ = 'N', use SSTERF to compute the eigenvalues. */
if (icompz == 0) {
ssterf_(n, &d__[1], &e[1], info);
return 0;
}
/* If N is smaller than the minimum divide size (SMLSIZ+1), then
solve the problem with another solver. */
if (*n <= smlsiz) {
if (icompz == 0) {
ssterf_(n, &d__[1], &e[1], info);
return 0;
} else if (icompz == 2) {
ssteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
info);
return 0;
} else {
ssteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1],
info);
return 0;
}
}
/* If COMPZ = 'V', the Z matrix must be stored elsewhere for later
use. */
if (icompz == 1) {
storez = *n * *n + 1;
} else {
storez = 1;
}
if (icompz == 2) {
slaset_("Full", n, n, &c_b18, &c_b19, &z__[z_offset], ldz);
}
/* Scale. */
orgnrm = slanst_("M", n, &d__[1], &e[1]);
if (orgnrm == 0.f) {
return 0;
}
eps = slamch_("Epsilon");
start = 1;
/* while ( START <= N ) */
L10:
if (start <= *n) {
/* Let END be the position of the next subdiagonal entry such that
E( END ) <= TINY or END = N if no such subdiagonal exists. The
matrix identified by the elements between START and END
constitutes an independent sub-problem. */
end = start;
L20:
if (end < *n) {
latime_1.ops += 4;
tiny = eps * sqrt((r__1 = d__[end], dabs(r__1))) * sqrt((r__2 =
d__[end + 1], dabs(r__2)));
if ((r__1 = e[end], dabs(r__1)) > tiny) {
++end;
goto L20;
}
}
/* (Sub) Problem determined. Compute its size and solve it. */
m = end - start + 1;
if (m == 1) {
start = end + 1;
goto L10;
}
if (m > smlsiz) {
*info = smlsiz;
/* Scale. */
orgnrm = slanst_("M", &m, &d__[start], &e[start]);
latime_1.ops = latime_1.ops + (m << 1) - 1;
slascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &m, &c__1, &d__[start]
, &m, info);
i__1 = m - 1;
i__2 = m - 1;
slascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &i__1, &c__1, &e[
start], &i__2, info);
if (icompz == 1) {
strtrw = 1;
} else {
strtrw = start;
}
slaed0_(&icompz, n, &m, &d__[start], &e[start], &z___ref(strtrw,
start), ldz, &work[1], n, &work[storez], &iwork[1], info);
if (*info != 0) {
*info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m
+ 1) + start - 1;
return 0;
}
/* Scale back. */
latime_1.ops += m;
slascl_("G", &c__0, &c__0, &c_b19, &orgnrm, &m, &c__1, &d__[start]
, &m, info);
} else {
if (icompz == 1) {
/* Since QR won't update a Z matrix which is larger than the
length of D, we must solve the sub-problem in a workspace and
then multiply back into Z. */
ssteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &work[
m * m + 1], info);
slacpy_("A", n, &m, &z___ref(1, start), ldz, &work[storez], n);
latime_1.ops += (real) (*n) * 2 * m * m;
sgemm_("N", "N", n, &m, &m, &c_b19, &work[storez], ldz, &work[
1], &m, &c_b18, &z___ref(1, start), ldz);
} else if (icompz == 2) {
ssteqr_("I", &m, &d__[start], &e[start], &z___ref(start,
start), ldz, &work[1], info);
} else {
ssterf_(&m, &d__[start], &e[start], info);
}
if (*info != 0) {
*info = start * (*n + 1) + end;
return 0;
}
}
start = end + 1;
goto L10;
}
/* endwhile
If the problem split any number of times, then the eigenvalues
will not be properly ordered. Here we permute the eigenvalues
(and the associated eigenvectors) into ascending order. */
if (m != *n) {
if (icompz == 0) {
/* Use Quick Sort */
slasrt_("I", n, &d__[1], info);
} else {
/* Use Selection Sort to minimize swaps of eigenvectors */
i__1 = *n;
for (ii = 2; ii <= i__1; ++ii) {
i__ = ii - 1;
k = i__;
p = d__[i__];
i__2 = *n;
for (j = ii; j <= i__2; ++j) {
if (d__[j] < p) {
k = j;
p = d__[j];
}
/* L30: */
}
if (k != i__) {
d__[k] = d__[i__];
d__[i__] = p;
sswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1);
}
/* L40: */
}
}
}
work[1] = (real) lwmin;
iwork[1] = liwmin;
return 0;
/* End of SSTEDC */
} /* sstedc_ */
#undef z___ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -