📄 slaed1.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* Subroutine */ int slaed1_(integer *n, real *d__, real *q, integer *ldq,
integer *indxq, real *rho, integer *cutpnt, real *work, integer *
iwork, integer *info)
{
/* System generated locals */
integer q_dim1, q_offset, i__1, i__2;
/* Local variables */
static integer indx, i__, k, indxc, indxp;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
static integer n1, n2;
extern /* Subroutine */ int slaed2_(integer *, integer *, integer *, real
*, real *, integer *, integer *, real *, real *, real *, real *,
real *, integer *, integer *, integer *, integer *, integer *),
slaed3_(integer *, integer *, integer *, real *, real *, integer *
, real *, real *, real *, integer *, integer *, real *, real *,
integer *);
static integer idlmda, is, iw, iz;
extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
integer *, integer *, real *, integer *, integer *, integer *);
static integer coltyp, iq2, cpp1;
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count and iteration count
ITCNT is unchanged, OPS is only incremented
Purpose
=======
SLAED1 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles
the case in which eigenvalues only or eigenvalues and eigenvectors
of a full symmetric matrix (which was reduced to tridiagonal form)
are desired.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) REAL array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
INDXQ (input/output) INTEGER array, dimension (N)
On entry, the permutation which separately sorts the two
subproblems in D into ascending order.
On exit, the permutation which will reintegrate the
subproblems back into sorted order,
i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
RHO (input) REAL
The subdiagonal entry used to create the rank-1 modification.
CUTPNT (input) INTEGER
The location of the last eigenvalue in the leading sub-matrix.
min(1,N) <= CUTPNT <= N/2.
WORK (workspace) REAL array, dimension (4*N + N**2)
IWORK (workspace) INTEGER array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
Further Details
===============
Based on contributions by
Jeff Rutter, Computer Science Division, University of California
at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee.
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--indxq;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ldq < max(1,*n)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MIN */
i__1 = 1, i__2 = *n / 2;
if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
*info = -7;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLAED1", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* The following values are integer pointers which indicate
the portion of the workspace
used by a particular array in SLAED2 and SLAED3. */
iz = 1;
idlmda = iz + *n;
iw = idlmda + *n;
iq2 = iw + *n;
indx = 1;
indxc = indx + *n;
coltyp = indxc + *n;
indxp = coltyp + *n;
/* Form the z-vector which consists of the last row of Q_1 and the
first row of Q_2. */
scopy_(cutpnt, &q_ref(*cutpnt, 1), ldq, &work[iz], &c__1);
cpp1 = *cutpnt + 1;
i__1 = *n - *cutpnt;
scopy_(&i__1, &q_ref(cpp1, cpp1), ldq, &work[iz + *cutpnt], &c__1);
/* Deflate eigenvalues. */
slaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
indxc], &iwork[indxp], &iwork[coltyp], info);
if (*info != 0) {
goto L20;
}
/* Solve Secular Equation. */
if (k != 0) {
is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
slaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
&work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
is], info);
if (*info != 0) {
goto L20;
}
/* Prepare the INDXQ sorting permutation. */
n1 = k;
n2 = *n - k;
slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
indxq[i__] = i__;
/* L10: */
}
}
L20:
return 0;
/* End of SLAED1 */
} /* slaed1_ */
#undef q_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -