📄 ztrevc.c
字号:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + *n;
i__3 = t_subscr(i__, i__);
work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
/* L20: */
}
/* Compute 1-norm of each column of strictly upper triangular
part of T to control overflow in triangular solver. */
rwork[1] = 0.;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
rwork[j] = dzasum_(&i__2, &t_ref(1, j), &c__1);
/* L30: */
}
/* ** */
latime_1.ops += *n * (*n - 1);
/* ** */
if (rightv) {
/* Compute right eigenvectors. */
is = *m;
for (ki = *n; ki >= 1; --ki) {
if (somev) {
if (! select[ki]) {
goto L80;
}
}
/* Computing MAX */
i__1 = t_subscr(ki, ki);
d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&
t_ref(ki, ki)), abs(d__2)));
smin = max(d__3,smlnum);
work[1].r = 1., work[1].i = 0.;
/* Form right-hand side. */
i__1 = ki - 1;
for (k = 1; k <= i__1; ++k) {
i__2 = k;
i__3 = t_subscr(k, ki);
z__1.r = -t[i__3].r, z__1.i = -t[i__3].i;
work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/* L40: */
}
/* Solve the triangular system:
(T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */
i__1 = ki - 1;
for (k = 1; k <= i__1; ++k) {
i__2 = t_subscr(k, k);
i__3 = t_subscr(k, k);
i__4 = t_subscr(ki, ki);
z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4]
.i;
t[i__2].r = z__1.r, t[i__2].i = z__1.i;
i__2 = t_subscr(k, k);
if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t_ref(k,
k)), abs(d__2)) < smin) {
i__3 = t_subscr(k, k);
t[i__3].r = smin, t[i__3].i = 0.;
}
/* L50: */
}
/* ** */
opst += ki - 1 << 1;
/* ** */
if (ki > 1) {
i__1 = ki - 1;
zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
t_offset], ldt, &work[1], &scale, &rwork[1], info);
i__1 = ki;
work[i__1].r = scale, work[i__1].i = 0.;
}
/* **
Increment opcount for triangular solver, assuming that
ops ZLATRS = ops ZTRSV, with no scaling in CLATRS. */
latime_1.ops += (ki << 2) * (ki - 1);
/* **
Copy the vector x or Q*x to VR and normalize. */
if (! over) {
zcopy_(&ki, &work[1], &c__1, &vr_ref(1, is), &c__1);
ii = izamax_(&ki, &vr_ref(1, is), &c__1);
i__1 = vr_subscr(ii, is);
remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
&vr_ref(ii, is)), abs(d__2)));
zdscal_(&ki, &remax, &vr_ref(1, is), &c__1);
/* ** */
opst += (ki << 2) + 3;
/* ** */
i__1 = *n;
for (k = ki + 1; k <= i__1; ++k) {
i__2 = vr_subscr(k, is);
vr[i__2].r = 0., vr[i__2].i = 0.;
/* L60: */
}
} else {
if (ki > 1) {
i__1 = ki - 1;
z__1.r = scale, z__1.i = 0.;
zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
1], &c__1, &z__1, &vr_ref(1, ki), &c__1);
}
ii = izamax_(n, &vr_ref(1, ki), &c__1);
i__1 = vr_subscr(ii, ki);
remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
&vr_ref(ii, ki)), abs(d__2)));
zdscal_(n, &remax, &vr_ref(1, ki), &c__1);
/* ** */
latime_1.ops += (*n << 3) * (ki - 1) + *n * 10 + 3;
/* ** */
}
/* Set back the original diagonal elements of T. */
i__1 = ki - 1;
for (k = 1; k <= i__1; ++k) {
i__2 = t_subscr(k, k);
i__3 = k + *n;
t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
/* L70: */
}
--is;
L80:
;
}
}
if (leftv) {
/* Compute left eigenvectors. */
is = 1;
i__1 = *n;
for (ki = 1; ki <= i__1; ++ki) {
if (somev) {
if (! select[ki]) {
goto L130;
}
}
/* Computing MAX */
i__2 = t_subscr(ki, ki);
d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&
t_ref(ki, ki)), abs(d__2)));
smin = max(d__3,smlnum);
i__2 = *n;
work[i__2].r = 1., work[i__2].i = 0.;
/* Form right-hand side. */
i__2 = *n;
for (k = ki + 1; k <= i__2; ++k) {
i__3 = k;
d_cnjg(&z__2, &t_ref(ki, k));
z__1.r = -z__2.r, z__1.i = -z__2.i;
work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L90: */
}
/* Solve the triangular system:
(T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */
i__2 = *n;
for (k = ki + 1; k <= i__2; ++k) {
i__3 = t_subscr(k, k);
i__4 = t_subscr(k, k);
i__5 = t_subscr(ki, ki);
z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
.i;
t[i__3].r = z__1.r, t[i__3].i = z__1.i;
i__3 = t_subscr(k, k);
if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t_ref(k,
k)), abs(d__2)) < smin) {
i__4 = t_subscr(k, k);
t[i__4].r = smin, t[i__4].i = 0.;
}
/* L100: */
}
/* ** */
opst += *n - ki << 1;
/* ** */
if (ki < *n) {
i__2 = *n - ki;
zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
i__2, &t_ref(ki + 1, ki + 1), ldt, &work[ki + 1], &
scale, &rwork[1], info);
i__2 = ki;
work[i__2].r = scale, work[i__2].i = 0.;
}
/* **
Increment opcount for triangular solver, assuming that
ops ZLATRS = ops ZTRSV, with no scaling in CLATRS. */
latime_1.ops += (*n - ki << 2) * (*n - ki + 1);
/* **
Copy the vector x or Q*x to VL and normalize. */
if (! over) {
i__2 = *n - ki + 1;
zcopy_(&i__2, &work[ki], &c__1, &vl_ref(ki, is), &c__1);
i__2 = *n - ki + 1;
ii = izamax_(&i__2, &vl_ref(ki, is), &c__1) + ki - 1;
i__2 = vl_subscr(ii, is);
remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
&vl_ref(ii, is)), abs(d__2)));
i__2 = *n - ki + 1;
zdscal_(&i__2, &remax, &vl_ref(ki, is), &c__1);
/* ** */
opst += (*n - ki + 1 << 2) + 3;
/* ** */
i__2 = ki - 1;
for (k = 1; k <= i__2; ++k) {
i__3 = vl_subscr(k, is);
vl[i__3].r = 0., vl[i__3].i = 0.;
/* L110: */
}
} else {
if (ki < *n) {
i__2 = *n - ki;
z__1.r = scale, z__1.i = 0.;
zgemv_("N", n, &i__2, &c_b2, &vl_ref(1, ki + 1), ldvl, &
work[ki + 1], &c__1, &z__1, &vl_ref(1, ki), &c__1);
}
ii = izamax_(n, &vl_ref(1, ki), &c__1);
i__2 = vl_subscr(ii, ki);
remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
&vl_ref(ii, ki)), abs(d__2)));
zdscal_(n, &remax, &vl_ref(1, ki), &c__1);
/* ** */
latime_1.ops += (*n << 3) * (*n - ki) + *n * 10 + 3;
/* ** */
}
/* Set back the original diagonal elements of T. */
i__2 = *n;
for (k = ki + 1; k <= i__2; ++k) {
i__3 = t_subscr(k, k);
i__4 = k + *n;
t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
/* L120: */
}
++is;
L130:
;
}
}
/* **
Compute final op count */
latime_1.ops += opst;
/* ** */
return 0;
/* End of ZTREVC */
} /* ztrevc_ */
#undef vr_ref
#undef vr_subscr
#undef vl_ref
#undef vl_subscr
#undef t_ref
#undef t_subscr
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -