📄 ztrevc.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static doublecomplex c_b2 = {1.,0.};
static integer c__1 = 1;
/* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select,
integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
*m, doublecomplex *work, doublereal *rwork, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_imag(doublecomplex *);
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
static logical allv;
static doublereal unfl, ovfl, smin;
static logical over;
static doublereal opst;
static integer i__, j, k;
static doublereal scale;
extern logical lsame_(char *, char *);
static doublereal remax;
static logical leftv, bothv;
extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *);
static logical somev;
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
static integer ii, ki;
extern doublereal dlamch_(char *);
static integer is;
extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
integer *, doublereal *, doublecomplex *, integer *);
extern integer izamax_(integer *, doublecomplex *, integer *);
static logical rightv;
extern doublereal dzasum_(integer *, doublecomplex *, integer *);
static doublereal smlnum;
extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublereal *, doublereal *, integer *);
static doublereal ulp;
#define t_subscr(a_1,a_2) (a_2)*t_dim1 + a_1
#define t_ref(a_1,a_2) t[t_subscr(a_1,a_2)]
#define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1
#define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)]
#define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1
#define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count.
OPS is only incremented, OPST is used to accumulate small
contributions to OPS to avoid roundoff error
Purpose
=======
ZTREVC computes some or all of the right and/or left eigenvectors of
a complex upper triangular matrix T.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, y'*T = w*y'
where y' denotes the conjugate transpose of the vector y.
If all eigenvectors are requested, the routine may either return the
matrices X and/or Y of right or left eigenvectors of T, or the
products Q*X and/or Q*Y, where Q is an input unitary
matrix. If T was obtained from the Schur factorization of an
original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
right or left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
and backtransform them using the input matrices
supplied in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If HOWMNY = 'A' or 'B', SELECT is not referenced.
To select the eigenvector corresponding to the j-th
eigenvalue, SELECT(j) must be set to .TRUE..
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) COMPLEX*16 array, dimension (LDT,N)
The upper triangular matrix T. T is modified, but restored
on exit.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the unitary matrix Q of
Schur vectors returned by ZHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
VL is lower triangular. The i-th column
VL(i) of VL is the eigenvector corresponding
to T(i,i).
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= max(1,N) if
SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the unitary matrix Q of
Schur vectors returned by ZHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
VR is upper triangular. The i-th column
VR(i) of VR is the eigenvector corresponding
to T(i,i).
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= max(1,N) if
SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected eigenvector occupies one
column.
WORK (workspace) COMPLEX*16 array, dimension (2*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
Decode and test the input parameters
Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
--rwork;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
allv = lsame_(howmny, "A");
over = lsame_(howmny, "B");
somev = lsame_(howmny, "S");
/* Set M to the number of columns required to store the selected
eigenvectors. */
if (somev) {
*m = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (select[j]) {
++(*m);
}
/* L10: */
}
} else {
*m = *n;
}
*info = 0;
if (! rightv && ! leftv) {
*info = -1;
} else if (! allv && ! over && ! somev) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || leftv && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || rightv && *ldvr < *n) {
*info = -10;
} else if (*mm < *m) {
*info = -11;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZTREVC", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
/* **
Initialize */
opst = 0.;
/* **
Set the constants to control overflow. */
unfl = dlamch_("Safe minimum");
ovfl = 1. / unfl;
dlabad_(&unfl, &ovfl);
ulp = dlamch_("Precision");
smlnum = unfl * (*n / ulp);
/* Store the diagonal elements of T in working array WORK. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -