📄 strevc.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static logical c_false = FALSE_;
static integer c__1 = 1;
static real c_b22 = 1.f;
static real c_b25 = 0.f;
static integer c__2 = 2;
static logical c_true = TRUE_;
/* Subroutine */ int strevc_(char *side, char *howmny, logical *select,
integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr,
integer *ldvr, integer *mm, integer *m, real *work, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3;
real r__1, r__2, r__3, r__4, r__5, r__6;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static real beta, emax;
static logical pair, allv;
static integer ierr;
static real unfl, ovfl, smin;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
static logical over;
static real vmax;
static integer jnxt;
static real opst;
static integer i__, j, k;
static real scale, x[4] /* was [2][2] */;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static real remax;
static logical leftv, bothv;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
static real vcrit;
static logical somev;
static integer j1, j2;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
static integer n2;
static real xnorm;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), slaln2_(logical *, integer *, integer *, real
*, real *, real *, integer *, real *, real *, real *, integer *,
real *, real *, real *, integer *, real *, real *, integer *);
static integer ii, ki;
extern /* Subroutine */ int slabad_(real *, real *);
static integer ip, is;
static real wi;
extern doublereal slamch_(char *);
static real wr;
extern /* Subroutine */ int xerbla_(char *, integer *);
static real bignum;
extern integer isamax_(integer *, real *, integer *);
static logical rightv;
static real smlnum, rec, ulp;
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]
#define x_ref(a_1,a_2) x[(a_2)*2 + a_1 - 3]
#define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1]
#define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count.
OPS is only incremented, OPST is used to accumulate small
contributions to OPS to avoid roundoff error
Purpose
=======
STREVC computes some or all of the right and/or left eigenvectors of
a real upper quasi-triangular matrix T.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, y'*T = w*y'
where y' denotes the conjugate transpose of the vector y.
If all eigenvectors are requested, the routine may either return the
matrices X and/or Y of right or left eigenvectors of T, or the
products Q*X and/or Q*Y, where Q is an input orthogonal
matrix. If T was obtained from the real-Schur factorization of an
original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
right or left eigenvectors of A.
T must be in Schur canonical form (as returned by SHSEQR), that is,
block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign. Corresponding to each 2-by-2
diagonal block is a complex conjugate pair of eigenvalues and
eigenvectors; only one eigenvector of the pair is computed, namely
the one corresponding to the eigenvalue with positive imaginary part.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
and backtransform them using the input matrices
supplied in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input/output) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If HOWMNY = 'A' or 'B', SELECT is not referenced.
To select the real eigenvector corresponding to a real
eigenvalue w(j), SELECT(j) must be set to .TRUE.. To select
the complex eigenvector corresponding to a complex conjugate
pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be
set to .TRUE.; then on exit SELECT(j) is .TRUE. and
SELECT(j+1) is .FALSE..
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input) REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T in Schur canonical form.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) REAL array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
VL has the same quasi-lower triangular form
as T'. If T(i,i) is a real eigenvalue, then
the i-th column VL(i) of VL is its
corresponding eigenvector. If T(i:i+1,i:i+1)
is a 2-by-2 block whose eigenvalues are
complex-conjugate eigenvalues of T, then
VL(i)+sqrt(-1)*VL(i+1) is the complex
eigenvector corresponding to the eigenvalue
with positive real part.
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= max(1,N) if
SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) REAL array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the orthogonal matrix Q
of Schur vectors returned by SHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
VR has the same quasi-upper triangular form
as T. If T(i,i) is a real eigenvalue, then
the i-th column VR(i) of VR is its
corresponding eigenvector. If T(i:i+1,i:i+1)
is a 2-by-2 block whose eigenvalues are
complex-conjugate eigenvalues of T, then
VR(i)+sqrt(-1)*VR(i+1) is the complex
eigenvector corresponding to the eigenvalue
with positive real part.
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= max(1,N) if
SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors.
If HOWMNY = 'A' or 'B', M is set to N.
Each selected real eigenvector occupies one column and each
selected complex eigenvector occupies two columns.
WORK (workspace) REAL array, dimension (3*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
Decode and test the input parameters
Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
allv = lsame_(howmny, "A");
over = lsame_(howmny, "B");
somev = lsame_(howmny, "S");
*info = 0;
if (! rightv && ! leftv) {
*info = -1;
} else if (! allv && ! over && ! somev) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || leftv && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || rightv && *ldvr < *n) {
*info = -10;
} else {
/* Set M to the number of columns required to store the selected
eigenvectors, standardize the array SELECT if necessary, and
test MM. */
if (somev) {
*m = 0;
pair = FALSE_;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (pair) {
pair = FALSE_;
select[j] = FALSE_;
} else {
if (j < *n) {
if (t_ref(j + 1, j) == 0.f) {
if (select[j]) {
++(*m);
}
} else {
pair = TRUE_;
if (select[j] || select[j + 1]) {
select[j] = TRUE_;
*m += 2;
}
}
} else {
if (select[*n]) {
++(*m);
}
}
}
/* L10: */
}
} else {
*m = *n;
}
if (*mm < *m) {
*info = -11;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("STREVC", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
/* **
Initialize */
opst = 0.f;
/* **
Set the constants to control overflow. */
unfl = slamch_("Safe minimum");
ovfl = 1.f / unfl;
slabad_(&unfl, &ovfl);
ulp = slamch_("Precision");
smlnum = unfl * (*n / ulp);
bignum = (1.f - ulp) / smlnum;
/* Compute 1-norm of each column of strictly upper triangular
part of T to control overflow in triangular solver. */
work[1] = 0.f;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
work[j] = 0.f;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[j] += (r__1 = t_ref(i__, j), dabs(r__1));
/* L20: */
}
/* L30: */
}
/* ** */
latime_1.ops += *n * (*n - 1) / 2;
/* **
Index IP is used to specify the real or complex eigenvalue:
IP = 0, real eigenvalue,
1, first of conjugate complex pair: (wr,wi)
-1, second of conjugate complex pair: (wr,wi) */
n2 = *n << 1;
if (rightv) {
/* Compute right eigenvectors. */
ip = 0;
is = *m;
for (ki = *n; ki >= 1; --ki) {
if (ip == 1) {
goto L130;
}
if (ki == 1) {
goto L40;
}
if (t_ref(ki, ki - 1) == 0.f) {
goto L40;
}
ip = -1;
L40:
if (somev) {
if (ip == 0) {
if (! select[ki]) {
goto L130;
}
} else {
if (! select[ki - 1]) {
goto L130;
}
}
}
/* Compute the KI-th eigenvalue (WR,WI). */
wr = t_ref(ki, ki);
wi = 0.f;
if (ip != 0) {
wi = sqrt((r__1 = t_ref(ki, ki - 1), dabs(r__1))) * sqrt((
r__2 = t_ref(ki - 1, ki), dabs(r__2)));
}
/* Computing MAX */
r__1 = ulp * (dabs(wr) + dabs(wi));
smin = dmax(r__1,smlnum);
if (ip == 0) {
/* Real right eigenvector */
work[ki + *n] = 1.f;
/* Form right-hand side */
i__1 = ki - 1;
for (k = 1; k <= i__1; ++k) {
work[k + *n] = -t_ref(k, ki);
/* L50: */
}
/* Solve the upper quasi-triangular system:
(T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -