⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 shgeqz.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 4 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    real ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static real c_b12 = 0.f;
static real c_b13 = 1.f;
static integer c__1 = 1;
static integer c__3 = 3;

/* Subroutine */ int shgeqz_(char *job, char *compq, char *compz, integer *n, 
	integer *ilo, integer *ihi, real *a, integer *lda, real *b, integer *
	ldb, real *alphar, real *alphai, real *beta, real *q, integer *ldq, 
	real *z__, integer *ldz, real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static real ad11l, ad12l, ad21l, ad22l, ad32l, wabs, atol, btol, temp, 
	    opst;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *), slag2_(real *, integer *, real *, 
	    integer *, real *, real *, real *, real *, real *, real *);
    static real temp2, s1inv, c__;
    static integer j;
    static real s, t, v[3], scale;
    extern logical lsame_(char *, char *);
    static integer iiter, ilast, jiter;
    static real anorm;
    static integer maxit;
    static real bnorm, tempi, tempr, s1, s2, u1, u2;
    static logical ilazr2;
    static real a11, a12, a21, a22, b11, b22, c12, c21;
    extern doublereal slapy2_(real *, real *);
    static integer jc;
    extern doublereal slapy3_(real *, real *, real *);
    static real an, bn, cl;
    extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real *
	    , real *, real *, real *, real *);
    static real cq, cr;
    static integer in;
    static real ascale, bscale, u12, w11;
    static integer jr;
    static real cz;
    static integer nq;
    static real sl, w12, w21, w22, wi, sr;
    static integer nz;
    static real vs, wr;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, 
	    real *);
    static real safmax;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real eshift;
    static logical ilschr;
    static real b1a, b2a;
    static integer icompq, ilastm;
    extern doublereal slanhs_(char *, integer *, real *, integer *, real *);
    static real a1i;
    static integer ischur;
    static real a2i, b1i;
    static logical ilazro;
    static integer icompz, ifirst, ifrstm;
    static real a1r;
    static integer istart;
    static logical ilpivt;
    static real a2r, b1r, b2i, b2r;
    extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
	    ), slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *);
    static logical lquery;
    static real wr2, ad11, ad12, ad21, ad22, c11i, c22i;
    static integer jch;
    static real c11r, c22r, u12l;
    static logical ilq;
    static real tau, sqi;
    static logical ilz;
    static real ulp, sqr, szi, szr;


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   

       ---------------------- Begin Timing Code -------------------------   
       Common block to return operation count and iteration count   
       ITCNT is initialized to 0, OPS is only incremented   
       OPST is used to accumulate small contributions to OPS   
       to avoid roundoff error   
       ----------------------- End Timing Code --------------------------   

    Purpose   
    =======   

    SHGEQZ implements a single-/double-shift version of the QZ method for   
    finding the generalized eigenvalues   

    w(j)=(ALPHAR(j) + i*ALPHAI(j))/BETAR(j)   of the equation   

         det( A - w(i) B ) = 0   

    In addition, the pair A,B may be reduced to generalized Schur form:   
    B is upper triangular, and A is block upper triangular, where the   
    diagonal blocks are either 1-by-1 or 2-by-2, the 2-by-2 blocks having   
    complex generalized eigenvalues (see the description of the argument   
    JOB.)   

    If JOB='S', then the pair (A,B) is simultaneously reduced to Schur   
    form by applying one orthogonal tranformation (usually called Q) on   
    the left and another (usually called Z) on the right.  The 2-by-2   
    upper-triangular diagonal blocks of B corresponding to 2-by-2 blocks   
    of A will be reduced to positive diagonal matrices.  (I.e.,   
    if A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0 and B(j,j) and   
    B(j+1,j+1) will be positive.)   

    If JOB='E', then at each iteration, the same transformations   
    are computed, but they are only applied to those parts of A and B   
    which are needed to compute ALPHAR, ALPHAI, and BETAR.   

    If JOB='S' and COMPQ and COMPZ are 'V' or 'I', then the orthogonal   
    transformations used to reduce (A,B) are accumulated into the arrays   
    Q and Z s.t.:   

         Q(in) A(in) Z(in)* = Q(out) A(out) Z(out)*   
         Q(in) B(in) Z(in)* = Q(out) B(out) Z(out)*   

    Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix   
         Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),   
         pp. 241--256.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            = 'E': compute only ALPHAR, ALPHAI, and BETA.  A and B will   
                   not necessarily be put into generalized Schur form.   
            = 'S': put A and B into generalized Schur form, as well   
                   as computing ALPHAR, ALPHAI, and BETA.   

    COMPQ   (input) CHARACTER*1   
            = 'N': do not modify Q.   
            = 'V': multiply the array Q on the right by the transpose of   
                   the orthogonal tranformation that is applied to the   
                   left side of A and B to reduce them to Schur form.   
            = 'I': like COMPQ='V', except that Q will be initialized to   
                   the identity first.   

    COMPZ   (input) CHARACTER*1   
            = 'N': do not modify Z.   
            = 'V': multiply the array Z on the right by the orthogonal   
                   tranformation that is applied to the right side of   
                   A and B to reduce them to Schur form.   
            = 'I': like COMPZ='V', except that Z will be initialized to   
                   the identity first.   

    N       (input) INTEGER   
            The order of the matrices A, B, Q, and Z.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that A is already upper triangular in rows and   
            columns 1:ILO-1 and IHI+1:N.   
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.   

    A       (input/output) REAL array, dimension (LDA, N)   
            On entry, the N-by-N upper Hessenberg matrix A.  Elements   
            below the subdiagonal must be zero.   
            If JOB='S', then on exit A and B will have been   
               simultaneously reduced to generalized Schur form.   
            If JOB='E', then on exit A will have been destroyed.   
               The diagonal blocks will be correct, but the off-diagonal   
               portion will be meaningless.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max( 1, N ).   

    B       (input/output) REAL array, dimension (LDB, N)   
            On entry, the N-by-N upper triangular matrix B.  Elements   
            below the diagonal must be zero.  2-by-2 blocks in B   
            corresponding to 2-by-2 blocks in A will be reduced to   
            positive diagonal form.  (I.e., if A(j+1,j) is non-zero,   
            then B(j+1,j)=B(j,j+1)=0 and B(j,j) and B(j+1,j+1) will be   
            positive.)   
            If JOB='S', then on exit A and B will have been   
               simultaneously reduced to Schur form.   
            If JOB='E', then on exit B will have been destroyed.   
               Elements corresponding to diagonal blocks of A will be   
               correct, but the off-diagonal portion will be meaningless.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max( 1, N ).   

    ALPHAR  (output) REAL array, dimension (N)   
            ALPHAR(1:N) will be set to real parts of the diagonal   
            elements of A that would result from reducing A and B to   
            Schur form and then further reducing them both to triangular   
            form using unitary transformations s.t. the diagonal of B   
            was non-negative real.  Thus, if A(j,j) is in a 1-by-1 block   
            (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=A(j,j).   
            Note that the (real or complex) values   
            (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the   
            generalized eigenvalues of the matrix pencil A - wB.   

    ALPHAI  (output) REAL array, dimension (N)   
            ALPHAI(1:N) will be set to imaginary parts of the diagonal   
            elements of A that would result from reducing A and B to   
            Schur form and then further reducing them both to triangular   
            form using unitary transformations s.t. the diagonal of B   
            was non-negative real.  Thus, if A(j,j) is in a 1-by-1 block   
            (i.e., A(j+1,j)=A(j,j+1)=0), then ALPHAR(j)=0.   
            Note that the (real or complex) values   
            (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the   
            generalized eigenvalues of the matrix pencil A - wB.   

    BETA    (output) REAL array, dimension (N)   
            BETA(1:N) will be set to the (real) diagonal elements of B   
            that would result from reducing A and B to Schur form and   
            then further reducing them both to triangular form using   
            unitary transformations s.t. the diagonal of B was   
            non-negative real.  Thus, if A(j,j) is in a 1-by-1 block   
            (i.e., A(j+1,j)=A(j,j+1)=0), then BETA(j)=B(j,j).   
            Note that the (real or complex) values   
            (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,N, are the   
            generalized eigenvalues of the matrix pencil A - wB.   
            (Note that BETA(1:N) will always be non-negative, and no   
            BETAI is necessary.)   

    Q       (input/output) REAL array, dimension (LDQ, N)   
            If COMPQ='N', then Q will not be referenced.   
            If COMPQ='V' or 'I', then the transpose of the orthogonal   
               transformations which are applied to A and B on the left   
               will be applied to the array Q on the right.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  LDQ >= 1.   
            If COMPQ='V' or 'I', then LDQ >= N.   

    Z       (input/output) REAL array, dimension (LDZ, N)   
            If COMPZ='N', then Z will not be referenced.   
            If COMPZ='V' or 'I', then the orthogonal transformations   
               which are applied to A and B on the right will be applied   
               to the array Z on the right.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1.   
            If COMPZ='V' or 'I', then LDZ >= N.   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,N).   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            = 1,...,N: the QZ iteration did not converge.  (A,B) is not   
                       in Schur form, but ALPHAR(i), ALPHAI(i), and   
                       BETA(i), i=INFO+1,...,N should be correct.   
            = N+1,...,2*N: the shift calculation failed.  (A,B) is not   
                       in Schur form, but ALPHAR(i), ALPHAI(i), and   
                       BETA(i), i=INFO-N+1,...,N should be correct.   
            > 2*N:     various "impossible" errors.   

    Further Details   
    ===============   

    Iteration counters:   

    JITER  -- counts iterations.   
    IITER  -- counts iterations run since ILAST was last   
              changed.  This is therefore reset only when a 1-by-1 or   
              2-by-2 block deflates off the bottom.   

    =====================================================================   


       Decode JOB, COMPQ, COMPZ   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    if (lsame_(job, "E")) {
	ilschr = FALSE_;
	ischur = 1;
    } else if (lsame_(job, "S")) {
	ilschr = TRUE_;
	ischur = 2;
    } else {
	ischur = 0;
    }

    if (lsame_(compq, "N")) {
	ilq = FALSE_;
	icompq = 1;
	nq = 0;
    } else if (lsame_(compq, "V")) {
	ilq = TRUE_;
	icompq = 2;
	nq = *n;
    } else if (lsame_(compq, "I")) {
	ilq = TRUE_;
	icompq = 3;
	nq = *n;
    } else {
	icompq = 0;
    }

    if (lsame_(compz, "N")) {
	ilz = FALSE_;
	icompz = 1;
	nz = 0;
    } else if (lsame_(compz, "V")) {
	ilz = TRUE_;
	icompz = 2;
	nz = *n;
    } else if (lsame_(compz, "I")) {
	ilz = TRUE_;
	icompz = 3;
	nz = *n;
    } else {
	icompz = 0;
    }

/*     Check Argument Values */

    *info = 0;
    work[1] = (real) max(1,*n);
    lquery = *lwork == -1;
    if (ischur == 0) {
	*info = -1;
    } else if (icompq == 0) {
	*info = -2;
    } else if (icompz == 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ilo < 1) {
	*info = -5;
    } else if (*ihi > *n || *ihi < *ilo - 1) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -