📄 slasd8.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static real c_b8 = 1.f;
/* Subroutine */ int slasd8_(integer *icompq, integer *k, real *d__, real *
z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr,
real *dsigma, real *work, integer *info)
{
/* System generated locals */
integer difr_dim1, difr_offset, i__1, i__2;
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal), r_sign(real *, real *);
/* Local variables */
static real temp;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
static integer iwk2i, iwk3i;
extern doublereal snrm2_(integer *, real *, integer *);
static integer i__, j;
static real diflj, difrj, dsigj;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
extern doublereal slamc3_(real *, real *);
extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *,
real *, real *, real *, real *, integer *);
static real dj;
extern /* Subroutine */ int xerbla_(char *, integer *);
static real dsigjp;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
real *, integer *);
static real rho;
static integer iwk1, iwk2, iwk3;
#define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1]
/* -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
Courant Institute, NAG Ltd., and Rice University
June 30, 1999
Purpose
=======
SLASD8 finds the square roots of the roots of the secular equation,
as defined by the values in DSIGMA and Z. It makes the appropriate
calls to SLASD4, and stores, for each element in D, the distance
to its two nearest poles (elements in DSIGMA). It also updates
the arrays VF and VL, the first and last components of all the
right singular vectors of the original bidiagonal matrix.
SLASD8 is called from SLASD6.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether singular vectors are to be computed in
factored form in the calling routine:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
K (input) INTEGER
The number of terms in the rational function to be solved
by SLASD4. K >= 1.
D (output) REAL array, dimension ( K )
On output, D contains the updated singular values.
Z (input) REAL array, dimension ( K )
The first K elements of this array contain the components
of the deflation-adjusted updating row vector.
VF (input/output) REAL array, dimension ( K )
On entry, VF contains information passed through DBEDE8.
On exit, VF contains the first K components of the first
components of all right singular vectors of the bidiagonal
matrix.
VL (input/output) REAL array, dimension ( K )
On entry, VL contains information passed through DBEDE8.
On exit, VL contains the first K components of the last
components of all right singular vectors of the bidiagonal
matrix.
DIFL (output) REAL array, dimension ( K )
On exit, DIFL(I) = D(I) - DSIGMA(I).
DIFR (output) REAL array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
LDDIFR (input) INTEGER
The leading dimension of DIFR, must be at least K.
DSIGMA (input) REAL array, dimension ( K )
The first K elements of this array contain the old roots
of the deflated updating problem. These are the poles
of the secular equation.
WORK (workspace) REAL array, dimension at least 3 * K
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an singular value did not converge
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--z__;
--vf;
--vl;
--difl;
difr_dim1 = *lddifr;
difr_offset = 1 + difr_dim1 * 1;
difr -= difr_offset;
--dsigma;
--work;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*k < 1) {
*info = -2;
} else if (*lddifr < *k) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLASD8", &i__1);
return 0;
}
/* Quick return if possible */
if (*k == 1) {
d__[1] = dabs(z__[1]);
difl[1] = d__[1];
if (*icompq == 1) {
difl[2] = 1.f;
difr_ref(1, 2) = 1.f;
}
return 0;
}
/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
be computed with high relative accuracy (barring over/underflow).
This is a problem on machines without a guard digit in
add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
which on any of these machines zeros out the bottommost
bit of DSIGMA(I) if it is 1; this makes the subsequent
subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
occurs. On binary machines with a guard digit (almost all
machines) it does not change DSIGMA(I) at all. On hexadecimal
and decimal machines with a guard digit, it slightly
changes the bottommost bits of DSIGMA(I). It does not account
for hexadecimal or decimal machines without guard digits
(we know of none). We use a subroutine call to compute
2*DLAMBDA(I) to prevent optimizing compilers from eliminating
this code. */
latime_1.ops += (real) (*k << 1);
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L10: */
}
/* Book keeping. */
iwk1 = 1;
iwk2 = iwk1 + *k;
iwk3 = iwk2 + *k;
iwk2i = iwk2 - 1;
iwk3i = iwk3 - 1;
/* Normalize Z. */
latime_1.ops += (real) (*k * 3 + 1);
rho = snrm2_(k, &z__[1], &c__1);
slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
rho *= rho;
/* Initialize WORK(IWK3). */
slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);
/* Compute the updated singular values, the arrays DIFL, DIFR,
and the updated Z. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
iwk2], info);
/* If the root finder fails, the computation is terminated. */
if (*info != 0) {
return 0;
}
latime_1.ops += 2.f;
work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
difl[j] = -work[j];
difr_ref(j, 1) = -work[j + 1];
latime_1.ops += (real) ((j - 1) * 6);
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L20: */
}
latime_1.ops += (real) ((*k - j) * 6);
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L30: */
}
/* L40: */
}
/* Compute updated Z. */
latime_1.ops += (real) (*k);
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
r__2 = sqrt((r__1 = work[iwk3i + i__], dabs(r__1)));
z__[i__] = r_sign(&r__2, &z__[i__]);
/* L50: */
}
/* Update VF and VL. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
diflj = difl[j];
dj = d__[j];
dsigj = -dsigma[j];
if (j < *k) {
difrj = -difr_ref(j, 1);
dsigjp = -dsigma[j + 1];
}
latime_1.ops += 3.f;
work[j] = -z__[j] / diflj / (dsigma[j] + dj);
latime_1.ops += (real) ((j - 1) * 5);
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / (
dsigma[i__] + dj);
/* L60: */
}
latime_1.ops += (real) ((*k - j) * 5);
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) /
(dsigma[i__] + dj);
/* L70: */
}
latime_1.ops += (real) (*k * 6);
temp = snrm2_(k, &work[1], &c__1);
work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
if (*icompq == 1) {
difr_ref(j, 2) = temp;
}
/* L80: */
}
scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
return 0;
/* End of SLASD8 */
} /* slasd8_ */
#undef difr_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -