📄 dsteqr.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static doublereal c_b9 = 0.;
static doublereal c_b10 = 1.;
static integer c__0 = 0;
static integer c__1 = 1;
static integer c__2 = 2;
/* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__,
doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
/* Local variables */
static integer lend, jtot;
extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal
*, doublereal *, doublereal *);
static doublereal b, c__, f, g;
static integer i__, j, k, l, m;
static doublereal p, r__, s;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *);
static doublereal anorm;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
static integer l1;
extern /* Subroutine */ int dlaev2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *);
static integer lendm1, lendp1;
extern doublereal dlapy2_(doublereal *, doublereal *);
static integer ii;
extern doublereal dlamch_(char *);
static integer mm, iscale;
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *), dlaset_(char *, integer *, integer
*, doublereal *, doublereal *, doublereal *, integer *);
static doublereal safmin;
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *);
static doublereal safmax;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
integer *);
static integer lendsv;
static doublereal ssfmin;
static integer nmaxit, icompz;
static doublereal ssfmax;
static integer lm1, mm1, nm1;
static doublereal rt1, rt2, eps;
static integer lsv;
static doublereal tst, eps2;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Common block to return operation count and iteration count
ITCNT is initialized to 0, OPS is only incremented
Purpose
=======
DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSTEQR", &i__1);
return 0;
}
/* Quick return if possible */
latime_1.itcnt = 0.;
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz == 2) {
z___ref(1, 1) = 1.;
}
return 0;
}
/* Determine the unit roundoff and over/underflow thresholds. */
latime_1.ops += 6;
eps = dlamch_("E");
/* Computing 2nd power */
d__1 = eps;
eps2 = d__1 * d__1;
safmin = dlamch_("S");
safmax = 1. / safmin;
ssfmax = sqrt(safmax) / 3.;
ssfmin = sqrt(safmin) / eps2;
/* Compute the eigenvalues and eigenvectors of the tridiagonal
matrix. */
if (icompz == 2) {
dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
}
nmaxit = *n * 30;
jtot = 0;
/* Determine where the matrix splits and choose QL or QR iteration
for each block, according to whether top or bottom diagonal
element is smaller. */
l1 = 1;
nm1 = *n - 1;
L10:
if (l1 > *n) {
goto L160;
}
if (l1 > 1) {
e[l1 - 1] = 0.;
}
if (l1 <= nm1) {
i__1 = nm1;
for (m = l1; m <= i__1; ++m) {
tst = (d__1 = e[m], abs(d__1));
if (tst == 0.) {
goto L30;
}
latime_1.ops += 4;
if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
+ 1], abs(d__2))) * eps) {
e[m] = 0.;
goto L30;
}
/* L20: */
}
}
m = *n;
L30:
l = l1;
lsv = l;
lend = m;
lendsv = lend;
l1 = m + 1;
if (lend == l) {
goto L10;
}
/* Scale submatrix in rows and columns L to LEND */
latime_1.ops += lend - l + 1 << 1;
i__1 = lend - l + 1;
anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
iscale = 0;
if (anorm == 0.) {
goto L10;
}
if (anorm > ssfmax) {
iscale = 1;
latime_1.ops = latime_1.ops + (lend - l << 1) + 1;
i__1 = lend - l + 1;
dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
info);
} else if (anorm < ssfmin) {
iscale = 2;
latime_1.ops = latime_1.ops + (lend - l << 1) + 1;
i__1 = lend - l + 1;
dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
info);
}
/* Choose between QL and QR iteration */
if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
lend = lsv;
l = lendsv;
}
if (lend > l) {
/* QL Iteration
Look for small subdiagonal element. */
L40:
if (l != lend) {
lendm1 = lend - 1;
i__1 = lendm1;
for (m = l; m <= i__1; ++m) {
/* Computing 2nd power */
d__2 = (d__1 = e[m], abs(d__1));
tst = d__2 * d__2;
latime_1.ops += 4;
if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
+ 1], abs(d__2)) + safmin) {
goto L60;
}
/* L50: */
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -