📄 zgelsd.c
字号:
i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
"ZUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
ftnlen)3);
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, "ZUNMBR"
, "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
maxwrk = max(i__1,i__2);
}
/* Computing MAX */
i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
minwrk = max(i__1,i__2);
}
minwrk = min(minwrk,maxwrk);
d__1 = (doublereal) maxwrk;
z__1.r = d__1, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
if (*lwork < minwrk && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGELSD", &i__1);
return 0;
} else if (lquery) {
goto L10;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0) {
*rank = 0;
return 0;
}
/* Get machine parameters. */
eps = dlamch_("P");
sfmin = dlamch_("S");
smlnum = sfmin / eps;
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
iascl = 0;
if (anrm > 0. && anrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {
/* Scale matrix norm down to BIGNUM. */
zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.) {
/* Matrix all zero. Return zero solution. */
i__1 = max(*m,*n);
zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
dlaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1);
*rank = 0;
goto L10;
}
/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
ibscl = 0;
if (bnrm > 0. && bnrm < smlnum) {
/* Scale matrix norm up to SMLNUM. */
zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {
/* Scale matrix norm down to BIGNUM. */
zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}
/* If M < N make sure B(M+1:N,:) = 0 */
if (*m < *n) {
i__1 = *n - *m;
zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
}
/* Overdetermined case. */
if (*m >= *n) {
/* Path 1 - overdetermined or exactly determined. */
mm = *m;
if (*m >= mnthr) {
/* Path 1a - overdetermined, with many more rows than columns */
mm = *n;
itau = 1;
nwork = itau + *n;
/* Compute A=Q*R.
(RWorkspace: need N)
(CWorkspace: need N, prefer N*NB) */
i__1 = *lwork - nwork + 1;
zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
info);
/* Multiply B by transpose(Q).
(RWorkspace: need N)
(CWorkspace: need NRHS, prefer NRHS*NB) */
i__1 = *lwork - nwork + 1;
zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[nwork], &i__1, info);
/* Zero out below R. */
if (*n > 1) {
i__1 = *n - 1;
i__2 = *n - 1;
zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a_ref(2, 1), lda);
}
}
itauq = 1;
itaup = itauq + *n;
nwork = itaup + *n;
ie = 1;
nrwork = ie + *n;
/* Bidiagonalize R in A.
(RWorkspace: need N)
(CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
i__1 = *lwork - nwork + 1;
zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors of R.
(CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
i__1 = *lwork - nwork + 1;
zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
&b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
zlalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of R. */
i__1 = *lwork - nwork + 1;
zunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
b[b_offset], ldb, &work[nwork], &i__1, info);
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
i__1,*nrhs), i__2 = *n - *m * 3;
if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {
/* Path 2a - underdetermined, with many more columns than rows
and sufficient workspace for an efficient algorithm. */
ldwork = *m;
/* Computing MAX
Computing MAX */
i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =
max(i__3,*nrhs), i__4 = *n - *m * 3;
i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda +
*m + *m * *nrhs;
if (*lwork >= max(i__1,i__2)) {
ldwork = *lda;
}
itau = 1;
nwork = *m + 1;
/* Compute A=L*Q.
(CWorkspace: need 2*M, prefer M+M*NB) */
i__1 = *lwork - nwork + 1;
zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
info);
il = nwork;
/* Copy L to WORK(IL), zeroing out above its diagonal. */
zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
i__1 = *m - 1;
i__2 = *m - 1;
zlaset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
ldwork);
itauq = il + ldwork * *m;
itaup = itauq + *m;
nwork = itaup + *m;
ie = 1;
nrwork = ie + *m;
/* Bidiagonalize L in WORK(IL).
(RWorkspace: need M)
(CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
i__1 = *lwork - nwork + 1;
zgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
&work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors of L.
(CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
i__1 = *lwork - nwork + 1;
zunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
zlalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of L. */
i__1 = *lwork - nwork + 1;
zunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Zero out below first M rows of B. */
i__1 = *n - *m;
zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
nwork = itau + *m;
/* Multiply transpose(Q) by B.
(CWorkspace: need NRHS, prefer NRHS*NB) */
i__1 = *lwork - nwork + 1;
zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[nwork], &i__1, info);
} else {
/* Path 2 - remaining underdetermined cases. */
itauq = 1;
itaup = itauq + *m;
nwork = itaup + *m;
ie = 1;
nrwork = ie + *m;
/* Bidiagonalize A.
(RWorkspace: need M)
(CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
i__1 = *lwork - nwork + 1;
zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
&work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors.
(CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
i__1 = *lwork - nwork + 1;
zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
, &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
zlalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of A. */
i__1 = *lwork - nwork + 1;
zunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
, &b[b_offset], ldb, &work[nwork], &i__1, info);
}
}
/* Undo scaling. */
if (iascl == 1) {
zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
minmn, info);
} else if (iascl == 2) {
zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
minmn, info);
}
if (ibscl == 1) {
zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}
L10:
d__1 = (doublereal) maxwrk;
z__1.r = d__1, z__1.i = 0.;
work[1].r = z__1.r, work[1].i = z__1.i;
return 0;
/* End of ZGELSD */
} /* zgelsd_ */
#undef b_ref
#undef b_subscr
#undef a_ref
#undef a_subscr
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -