⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgelsd.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 2 页
字号:
		i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, 
			"ZUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
			ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, "ZUNMBR"
			, "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
		maxwrk = max(i__1,i__2);
	    }
/* Computing MAX */
	    i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
	    minwrk = max(i__1,i__2);
	}
	minwrk = min(minwrk,maxwrk);
	d__1 = (doublereal) maxwrk;
	z__1.r = d__1, z__1.i = 0.;
	work[1].r = z__1.r, work[1].i = z__1.i;
	if (*lwork < minwrk && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGELSD", &i__1);
	return 0;
    } else if (lquery) {
	goto L10;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters. */

    eps = dlamch_("P");
    sfmin = dlamch_("S");
    smlnum = sfmin / eps;
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A if max entry outside range [SMLNUM,BIGNUM]. */

    anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
	dlaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1);
	*rank = 0;
	goto L10;
    }

/*     Scale B if max entry outside range [SMLNUM,BIGNUM]. */

    bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM. */

	zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     If M < N make sure B(M+1:N,:) = 0 */

    if (*m < *n) {
	i__1 = *n - *m;
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
    }

/*     Overdetermined case. */

    if (*m >= *n) {

/*        Path 1 - overdetermined or exactly determined. */

	mm = *m;
	if (*m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than columns */

	    mm = *n;
	    itau = 1;
	    nwork = itau + *n;

/*           Compute A=Q*R.   
             (RWorkspace: need N)   
             (CWorkspace: need N, prefer N*NB) */

	    i__1 = *lwork - nwork + 1;
	    zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);

/*           Multiply B by transpose(Q).   
             (RWorkspace: need N)   
             (CWorkspace: need NRHS, prefer NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

/*           Zero out below R. */

	    if (*n > 1) {
		i__1 = *n - 1;
		i__2 = *n - 1;
		zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a_ref(2, 1), lda);
	    }
	}

	itauq = 1;
	itaup = itauq + *n;
	nwork = itaup + *n;
	ie = 1;
	nrwork = ie + *n;

/*        Bidiagonalize R in A.   
          (RWorkspace: need N)   
          (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */

	i__1 = *lwork - nwork + 1;
	zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
		work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of R.   
          (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */

	i__1 = *lwork - nwork + 1;
	zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
		&b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	zlalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, 
		rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
	if (*info != 0) {
	    goto L10;
	}

/*        Multiply B by right bidiagonalizing vectors of R. */

	i__1 = *lwork - nwork + 1;
	zunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
		b[b_offset], ldb, &work[nwork], &i__1, info);

    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
		i__1,*nrhs), i__2 = *n - *m * 3;
	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {

/*        Path 2a - underdetermined, with many more columns than rows   
          and sufficient workspace for an efficient algorithm. */

	    ldwork = *m;
/* Computing MAX   
   Computing MAX */
	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 
		    max(i__3,*nrhs), i__4 = *n - *m * 3;
	    i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + 
		    *m + *m * *nrhs;
	    if (*lwork >= max(i__1,i__2)) {
		ldwork = *lda;
	    }
	    itau = 1;
	    nwork = *m + 1;

/*        Compute A=L*Q.   
          (CWorkspace: need 2*M, prefer M+M*NB) */

	    i__1 = *lwork - nwork + 1;
	    zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);
	    il = nwork;

/*        Copy L to WORK(IL), zeroing out above its diagonal. */

	    zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
	    i__1 = *m - 1;
	    i__2 = *m - 1;
	    zlaset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
		    ldwork);
	    itauq = il + ldwork * *m;
	    itaup = itauq + *m;
	    nwork = itaup + *m;
	    ie = 1;
	    nrwork = ie + *m;

/*        Bidiagonalize L in WORK(IL).   
          (RWorkspace: need M)   
          (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */

	    i__1 = *lwork - nwork + 1;
	    zgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
		     &work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of L.   
          (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    zunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    zlalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
		     info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of L. */

	    i__1 = *lwork - nwork + 1;
	    zunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Zero out below first M rows of B. */

	    i__1 = *n - *m;
	    zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
	    nwork = itau + *m;

/*        Multiply transpose(Q) by B.   
          (CWorkspace: need NRHS, prefer NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

	} else {

/*        Path 2 - remaining underdetermined cases. */

	    itauq = 1;
	    itaup = itauq + *m;
	    nwork = itaup + *m;
	    ie = 1;
	    nrwork = ie + *m;

/*        Bidiagonalize A.   
          (RWorkspace: need M)   
          (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */

	    i__1 = *lwork - nwork + 1;
	    zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], 
		    &work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors.   
          (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    zlalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
		     info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of A. */

	    i__1 = *lwork - nwork + 1;
	    zunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

	}
    }

/*     Undo scaling. */

    if (iascl == 1) {
	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    } else if (iascl == 2) {
	zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    }
    if (ibscl == 1) {
	zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L10:
    d__1 = (doublereal) maxwrk;
    z__1.r = d__1, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;
    return 0;

/*     End of ZGELSD */

} /* zgelsd_ */

#undef b_ref
#undef b_subscr
#undef a_ref
#undef a_subscr


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -