📄 zlalsa.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static doublereal c_b10 = 1.;
static doublereal c_b11 = 0.;
static integer c__2 = 2;
/* Subroutine */ int zlalsa_(integer *icompq, integer *smlsiz, integer *n,
integer *nrhs, doublecomplex *b, integer *ldb, doublecomplex *bx,
integer *ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *
k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
rwork, integer *iwork, integer *info)
{
/* System generated locals */
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1,
difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset,
poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset,
z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1,
i__2, i__3, i__4, i__5, i__6;
doublecomplex z__1;
/* Builtin functions */
double d_imag(doublecomplex *);
integer pow_ii(integer *, integer *);
/* Local variables */
static integer jcol, nlvl, sqre, jrow, i__, j, jimag;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *);
static integer jreal, inode, ndiml, ndimr, i1;
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal dopbl3_(char *, integer *, integer *, integer *)
;
extern /* Subroutine */ int zlals0_(integer *, integer *, integer *,
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *, integer *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *
, integer *);
static integer ic, lf, nd, ll, nl, nr;
extern /* Subroutine */ int dlasdt_(integer *, integer *, integer *,
integer *, integer *, integer *, integer *), xerbla_(char *,
integer *);
static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
#define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1]
#define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1]
#define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
#define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1]
#define bx_subscr(a_1,a_2) (a_2)*bx_dim1 + a_1
#define bx_ref(a_1,a_2) bx[bx_subscr(a_1,a_2)]
#define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1]
#define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1]
#define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1]
/* -- LAPACK routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
ZLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by ZLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input) COMPLEX*16 array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
RWORK (workspace) DOUBLE PRECISION array, dimension at least
max ( N, (SMLSZ+1)*NRHS*3 ).
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
Test the input parameters.
Parameter adjustments */
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
bx_dim1 = *ldbx;
bx_offset = 1 + bx_dim1 * 1;
bx -= bx_offset;
givnum_dim1 = *ldu;
givnum_offset = 1 + givnum_dim1 * 1;
givnum -= givnum_offset;
poles_dim1 = *ldu;
poles_offset = 1 + poles_dim1 * 1;
poles -= poles_offset;
z_dim1 = *ldu;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
difr_dim1 = *ldu;
difr_offset = 1 + difr_dim1 * 1;
difr -= difr_offset;
difl_dim1 = *ldu;
difl_offset = 1 + difl_dim1 * 1;
difl -= difl_offset;
vt_dim1 = *ldu;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
--k;
--givptr;
perm_dim1 = *ldgcol;
perm_offset = 1 + perm_dim1 * 1;
perm -= perm_offset;
givcol_dim1 = *ldgcol;
givcol_offset = 1 + givcol_dim1 * 1;
givcol -= givcol_offset;
--c__;
--s;
--rwork;
--iwork;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*smlsiz < 3) {
*info = -2;
} else if (*n < *smlsiz) {
*info = -3;
} else if (*nrhs < 1) {
*info = -4;
} else if (*ldb < *n) {
*info = -6;
} else if (*ldbx < *n) {
*info = -8;
} else if (*ldu < *n) {
*info = -10;
} else if (*ldgcol < *n) {
*info = -19;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZLALSA", &i__1);
return 0;
}
/* Book-keeping and setting up the computation tree. */
inode = 1;
ndiml = inode + *n;
ndimr = ndiml + *n;
dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
smlsiz);
/* The following code applies back the left singular vector factors.
For applying back the right singular vector factors, go to 170. */
if (*icompq == 1) {
goto L170;
}
/* The nodes on the bottom level of the tree were solved
by DLASDQ. The corresponding left and right singular vector
matrices are in explicit form. First apply back the left
singular vector matrices. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
/* IC : center row of each node
NL : number of rows of left subproblem
NR : number of rows of right subproblem
NLF: starting row of the left subproblem
NRF: starting row of the right subproblem */
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nr = iwork[ndimr + i1];
nlf = ic - nl;
nrf = ic + 1;
/* Since B and BX are complex, the following call to DGEMM
is performed in two steps (real and imaginary parts).
CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
$ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */
j = nl * *nrhs << 1;
i__2 = *nrhs;
for (jcol = 1; jcol <= i__2; ++jcol) {
i__3 = nlf + nl - 1;
for (jrow = nlf; jrow <= i__3; ++jrow) {
++j;
i__4 = b_subscr(jrow, jcol);
rwork[j] = b[i__4].r;
/* L10: */
}
/* L20: */
}
latime_1.ops += dopbl3_("DGEMM ", &nl, nrhs, &nl);
dgemm_("T", "N", &nl, nrhs, &nl, &c_b10, &u_ref(nlf, 1), ldu, &rwork[(
nl * *nrhs << 1) + 1], &nl, &c_b11, &rwork[1], &nl);
j = nl * *nrhs << 1;
i__2 = *nrhs;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -