⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zlals0.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static doublereal c_b5 = -1.;
static integer c__1 = 1;
static integer c__0 = 0;
static doublereal c_b16 = 1.;
static doublereal c_b18 = 0.;

/* Subroutine */ int zlals0_(integer *icompq, integer *nl, integer *nr, 
	integer *sqre, integer *nrhs, doublecomplex *b, integer *ldb, 
	doublecomplex *bx, integer *ldbx, integer *perm, integer *givptr, 
	integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum,
	 doublereal *poles, doublereal *difl, doublereal *difr, doublereal *
	z__, integer *k, doublereal *c__, doublereal *s, doublereal *rwork, 
	integer *info)
{
    /* System generated locals */
    integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1, 
	    givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset, 
	    bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1;
    doublecomplex z__1;

    /* Builtin functions */
    double d_imag(doublecomplex *);

    /* Local variables */
    static integer jcol;
    static doublereal temp;
    static integer jrow;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static integer i__, j, m, n;
    static doublereal diflj, difrj, dsigj;
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), zdrot_(integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *);
    extern doublereal dlamc3_(doublereal *, doublereal *);
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern doublereal dopbl2_(char *, integer *, integer *, integer *, 
	    integer *);
    static doublereal dj;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal dsigjp;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
	     doublereal *, doublereal *, integer *, integer *, doublecomplex *
	    , integer *, integer *), zlacpy_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    static integer nlp1;


#define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1]
#define bx_subscr(a_1,a_2) (a_2)*bx_dim1 + a_1
#define bx_ref(a_1,a_2) bx[bx_subscr(a_1,a_2)]
#define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1]
#define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1]


/*  -- LAPACK routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       December 22, 1999   


    Purpose   
    =======   

    ZLALS0 applies back the multiplying factors of either the left or the   
    right singular vector matrix of a diagonal matrix appended by a row   
    to the right hand side matrix B in solving the least squares problem   
    using the divide-and-conquer SVD approach.   

    For the left singular vector matrix, three types of orthogonal   
    matrices are involved:   

    (1L) Givens rotations: the number of such rotations is GIVPTR; the   
         pairs of columns/rows they were applied to are stored in GIVCOL;   
         and the C- and S-values of these rotations are stored in GIVNUM.   

    (2L) Permutation. The (NL+1)-st row of B is to be moved to the first   
         row, and for J=2:N, PERM(J)-th row of B is to be moved to the   
         J-th row.   

    (3L) The left singular vector matrix of the remaining matrix.   

    For the right singular vector matrix, four types of orthogonal   
    matrices are involved:   

    (1R) The right singular vector matrix of the remaining matrix.   

    (2R) If SQRE = 1, one extra Givens rotation to generate the right   
         null space.   

    (3R) The inverse transformation of (2L).   

    (4R) The inverse transformation of (1L).   

    Arguments   
    =========   

    ICOMPQ (input) INTEGER   
           Specifies whether singular vectors are to be computed in   
           factored form:   
           = 0: Left singular vector matrix.   
           = 1: Right singular vector matrix.   

    NL     (input) INTEGER   
           The row dimension of the upper block. NL >= 1.   

    NR     (input) INTEGER   
           The row dimension of the lower block. NR >= 1.   

    SQRE   (input) INTEGER   
           = 0: the lower block is an NR-by-NR square matrix.   
           = 1: the lower block is an NR-by-(NR+1) rectangular matrix.   

           The bidiagonal matrix has row dimension N = NL + NR + 1,   
           and column dimension M = N + SQRE.   

    NRHS   (input) INTEGER   
           The number of columns of B and BX. NRHS must be at least 1.   

    B      (input/output) COMPLEX*16 array, dimension ( LDB, NRHS )   
           On input, B contains the right hand sides of the least   
           squares problem in rows 1 through M. On output, B contains   
           the solution X in rows 1 through N.   

    LDB    (input) INTEGER   
           The leading dimension of B. LDB must be at least   
           max(1,MAX( M, N ) ).   

    BX     (workspace) COMPLEX*16 array, dimension ( LDBX, NRHS )   

    LDBX   (input) INTEGER   
           The leading dimension of BX.   

    PERM   (input) INTEGER array, dimension ( N )   
           The permutations (from deflation and sorting) applied   
           to the two blocks.   

    GIVPTR (input) INTEGER   
           The number of Givens rotations which took place in this   
           subproblem.   

    GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )   
           Each pair of numbers indicates a pair of rows/columns   
           involved in a Givens rotation.   

    LDGCOL (input) INTEGER   
           The leading dimension of GIVCOL, must be at least N.   

    GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )   
           Each number indicates the C or S value used in the   
           corresponding Givens rotation.   

    LDGNUM (input) INTEGER   
           The leading dimension of arrays DIFR, POLES and   
           GIVNUM, must be at least K.   

    POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )   
           On entry, POLES(1:K, 1) contains the new singular   
           values obtained from solving the secular equation, and   
           POLES(1:K, 2) is an array containing the poles in the secular   
           equation.   

    DIFL   (input) DOUBLE PRECISION array, dimension ( K ).   
           On entry, DIFL(I) is the distance between I-th updated   
           (undeflated) singular value and the I-th (undeflated) old   
           singular value.   

    DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).   
           On entry, DIFR(I, 1) contains the distances between I-th   
           updated (undeflated) singular value and the I+1-th   
           (undeflated) old singular value. And DIFR(I, 2) is the   
           normalizing factor for the I-th right singular vector.   

    Z      (input) DOUBLE PRECISION array, dimension ( K )   
           Contain the components of the deflation-adjusted updating row   
           vector.   

    K      (input) INTEGER   
           Contains the dimension of the non-deflated matrix,   
           This is the order of the related secular equation. 1 <= K <=N.   

    C      (input) DOUBLE PRECISION   
           C contains garbage if SQRE =0 and the C-value of a Givens   
           rotation related to the right null space if SQRE = 1.   

    S      (input) DOUBLE PRECISION   
           S contains garbage if SQRE =0 and the S-value of a Givens   
           rotation related to the right null space if SQRE = 1.   

    RWORK  (workspace) DOUBLE PRECISION array, dimension   
           ( K*(1+NRHS) + 2*NRHS )   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    bx_dim1 = *ldbx;
    bx_offset = 1 + bx_dim1 * 1;
    bx -= bx_offset;
    --perm;
    givcol_dim1 = *ldgcol;
    givcol_offset = 1 + givcol_dim1 * 1;
    givcol -= givcol_offset;
    difr_dim1 = *ldgnum;
    difr_offset = 1 + difr_dim1 * 1;
    difr -= difr_offset;
    poles_dim1 = *ldgnum;
    poles_offset = 1 + poles_dim1 * 1;
    poles -= poles_offset;
    givnum_dim1 = *ldgnum;
    givnum_offset = 1 + givnum_dim1 * 1;
    givnum -= givnum_offset;
    --difl;
    --z__;
    --rwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*nl < 1) {
	*info = -2;
    } else if (*nr < 1) {
	*info = -3;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -4;
    }

    n = *nl + *nr + 1;

    if (*nrhs < 1) {
	*info = -5;
    } else if (*ldb < n) {
	*info = -7;
    } else if (*ldbx < n) {
	*info = -9;
    } else if (*givptr < 0) {
	*info = -11;
    } else if (*ldgcol < n) {
	*info = -13;
    } else if (*ldgnum < n) {
	*info = -15;
    } else if (*k < 1) {
	*info = -20;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZLALS0", &i__1);
	return 0;
    }

    m = n + *sqre;
    nlp1 = *nl + 1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -