⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clalsa.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 2 页
字号:
	    i__3 = nlf + nl - 1;
	    for (jrow = nlf; jrow <= i__3; ++jrow) {
		++j;
		rwork[j] = r_imag(&b_ref(jrow, jcol));
/* L30: */
	    }
/* L40: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nl, nrhs, &nl);
	sgemm_("T", "N", &nl, nrhs, &nl, &c_b10, &u_ref(nlf, 1), ldu, &rwork[(
		nl * *nrhs << 1) + 1], &nl, &c_b11, &rwork[nl * *nrhs + 1], &
		nl);
	jreal = 0;
	jimag = nl * *nrhs;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nlf + nl - 1;
	    for (jrow = nlf; jrow <= i__3; ++jrow) {
		++jreal;
		++jimag;
		i__4 = bx_subscr(jrow, jcol);
		i__5 = jreal;
		i__6 = jimag;
		q__1.r = rwork[i__5], q__1.i = rwork[i__6];
		bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
/* L50: */
	    }
/* L60: */
	}

/*        Since B and BX are complex, the following call to SGEMM   
          is performed in two steps (real and imaginary parts).   

          CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,   
      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */

	j = nr * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nr - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++j;
		i__4 = b_subscr(jrow, jcol);
		rwork[j] = b[i__4].r;
/* L70: */
	    }
/* L80: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nr, nrhs, &nr);
	sgemm_("T", "N", &nr, nrhs, &nr, &c_b10, &u_ref(nrf, 1), ldu, &rwork[(
		nr * *nrhs << 1) + 1], &nr, &c_b11, &rwork[1], &nr);
	j = nr * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nr - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++j;
		rwork[j] = r_imag(&b_ref(jrow, jcol));
/* L90: */
	    }
/* L100: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nr, nrhs, &nr);
	sgemm_("T", "N", &nr, nrhs, &nr, &c_b10, &u_ref(nrf, 1), ldu, &rwork[(
		nr * *nrhs << 1) + 1], &nr, &c_b11, &rwork[nr * *nrhs + 1], &
		nr);
	jreal = 0;
	jimag = nr * *nrhs;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nr - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++jreal;
		++jimag;
		i__4 = bx_subscr(jrow, jcol);
		i__5 = jreal;
		i__6 = jimag;
		q__1.r = rwork[i__5], q__1.i = rwork[i__6];
		bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
/* L110: */
	    }
/* L120: */
	}

/* L130: */
    }

/*     Next copy the rows of B that correspond to unchanged rows   
       in the bidiagonal matrix to BX. */

    i__1 = nd;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ic = iwork[inode + i__ - 1];
	ccopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx);
/* L140: */
    }

/*     Finally go through the left singular vector matrices of all   
       the other subproblems bottom-up on the tree. */

    j = pow_ii(&c__2, &nlvl);
    sqre = 0;

    for (lvl = nlvl; lvl >= 1; --lvl) {
	lvl2 = (lvl << 1) - 1;

/*        find the first node LF and last node LL on   
          the current level LVL */

	if (lvl == 1) {
	    lf = 1;
	    ll = 1;
	} else {
	    i__1 = lvl - 1;
	    lf = pow_ii(&c__2, &i__1);
	    ll = (lf << 1) - 1;
	}
	i__1 = ll;
	for (i__ = lf; i__ <= i__1; ++i__) {
	    im1 = i__ - 1;
	    ic = iwork[inode + im1];
	    nl = iwork[ndiml + im1];
	    nr = iwork[ndimr + im1];
	    nlf = ic - nl;
	    nrf = ic + 1;
	    --j;
	    clals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, &
		    b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], &
		    givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), 
		    ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), &
		    difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], &
		    s[j], &rwork[1], info);
/* L150: */
	}
/* L160: */
    }
    goto L330;

/*     ICOMPQ = 1: applying back the right singular vector factors. */

L170:

/*     First now go through the right singular vector matrices of all   
       the tree nodes top-down. */

    j = 0;
    i__1 = nlvl;
    for (lvl = 1; lvl <= i__1; ++lvl) {
	lvl2 = (lvl << 1) - 1;

/*        Find the first node LF and last node LL on   
          the current level LVL. */

	if (lvl == 1) {
	    lf = 1;
	    ll = 1;
	} else {
	    i__2 = lvl - 1;
	    lf = pow_ii(&c__2, &i__2);
	    ll = (lf << 1) - 1;
	}
	i__2 = lf;
	for (i__ = ll; i__ >= i__2; --i__) {
	    im1 = i__ - 1;
	    ic = iwork[inode + im1];
	    nl = iwork[ndiml + im1];
	    nr = iwork[ndimr + im1];
	    nlf = ic - nl;
	    nrf = ic + 1;
	    if (i__ == ll) {
		sqre = 0;
	    } else {
		sqre = 1;
	    }
	    ++j;
	    clals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, &
		    bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], &
		    givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2), 
		    ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), &
		    difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], &
		    s[j], &rwork[1], info);
/* L180: */
	}
/* L190: */
    }

/*     The nodes on the bottom level of the tree were solved   
       by SLASDQ. The corresponding right singular vector   
       matrices are in explicit form. Apply them back. */

    ndb1 = (nd + 1) / 2;
    i__1 = nd;
    for (i__ = ndb1; i__ <= i__1; ++i__) {
	i1 = i__ - 1;
	ic = iwork[inode + i1];
	nl = iwork[ndiml + i1];
	nr = iwork[ndimr + i1];
	nlp1 = nl + 1;
	if (i__ == nd) {
	    nrp1 = nr;
	} else {
	    nrp1 = nr + 1;
	}
	nlf = ic - nl;
	nrf = ic + 1;

/*        Since B and BX are complex, the following call to SGEMM is   
          performed in two steps (real and imaginary parts).   

          CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,   
      $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */

	j = nlp1 * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nlf + nlp1 - 1;
	    for (jrow = nlf; jrow <= i__3; ++jrow) {
		++j;
		i__4 = b_subscr(jrow, jcol);
		rwork[j] = b[i__4].r;
/* L200: */
	    }
/* L210: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nlp1, nrhs, &nlp1);
	sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b10, &vt_ref(nlf, 1), ldu, &
		rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b11, &rwork[1], &
		nlp1);
	j = nlp1 * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nlf + nlp1 - 1;
	    for (jrow = nlf; jrow <= i__3; ++jrow) {
		++j;
		rwork[j] = r_imag(&b_ref(jrow, jcol));
/* L220: */
	    }
/* L230: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nlp1, nrhs, &nlp1);
	sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b10, &vt_ref(nlf, 1), ldu, &
		rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b11, &rwork[nlp1 * *
		nrhs + 1], &nlp1);
	jreal = 0;
	jimag = nlp1 * *nrhs;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nlf + nlp1 - 1;
	    for (jrow = nlf; jrow <= i__3; ++jrow) {
		++jreal;
		++jimag;
		i__4 = bx_subscr(jrow, jcol);
		i__5 = jreal;
		i__6 = jimag;
		q__1.r = rwork[i__5], q__1.i = rwork[i__6];
		bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
/* L240: */
	    }
/* L250: */
	}

/*        Since B and BX are complex, the following call to SGEMM is   
          performed in two steps (real and imaginary parts).   

          CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,   
      $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */

	j = nrp1 * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nrp1 - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++j;
		i__4 = b_subscr(jrow, jcol);
		rwork[j] = b[i__4].r;
/* L260: */
	    }
/* L270: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nrp1, nrhs, &nrp1);
	sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b10, &vt_ref(nrf, 1), ldu, &
		rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b11, &rwork[1], &
		nrp1);
	j = nrp1 * *nrhs << 1;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nrp1 - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++j;
		rwork[j] = r_imag(&b_ref(jrow, jcol));
/* L280: */
	    }
/* L290: */
	}
	latime_1.ops += sopbl3_("SGEMM ", &nrp1, nrhs, &nrp1);
	sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b10, &vt_ref(nrf, 1), ldu, &
		rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b11, &rwork[nrp1 * *
		nrhs + 1], &nrp1);
	jreal = 0;
	jimag = nrp1 * *nrhs;
	i__2 = *nrhs;
	for (jcol = 1; jcol <= i__2; ++jcol) {
	    i__3 = nrf + nrp1 - 1;
	    for (jrow = nrf; jrow <= i__3; ++jrow) {
		++jreal;
		++jimag;
		i__4 = bx_subscr(jrow, jcol);
		i__5 = jreal;
		i__6 = jimag;
		q__1.r = rwork[i__5], q__1.i = rwork[i__6];
		bx[i__4].r = q__1.r, bx[i__4].i = q__1.i;
/* L300: */
	    }
/* L310: */
	}

/* L320: */
    }

L330:

    return 0;

/*     End of CLALSA */

} /* clalsa_ */

#undef givnum_ref
#undef givcol_ref
#undef vt_ref
#undef bx_ref
#undef bx_subscr
#undef poles_ref
#undef z___ref
#undef u_ref
#undef b_ref
#undef b_subscr
#undef perm_ref
#undef difr_ref
#undef difl_ref


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -