⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clalsd.c

📁 提供矩阵类的函数库
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    real ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static integer c__1 = 1;
static integer c__0 = 0;
static real c_b10 = 1.f;
static real c_b35 = 0.f;

/* Subroutine */ int clalsd_(char *uplo, integer *smlsiz, integer *n, integer 
	*nrhs, real *d__, real *e, complex *b, integer *ldb, real *rcond, 
	integer *rank, complex *work, real *rwork, integer *iwork, integer *
	info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    real r__1;
    complex q__1;

    /* Builtin functions */
    double r_imag(complex *), log(doublereal), r_sign(real *, real *);

    /* Local variables */
    static integer difl, difr, jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow,
	     irwu, c__, i__, j, k;
    static real r__;
    static integer s, u, jimag, z__, jreal;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static integer irwib;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    static integer poles, sizei, irwrb, nsize;
    extern /* Subroutine */ int csrot_(integer *, complex *, integer *, 
	    complex *, integer *, real *, real *);
    static integer irwvt, icmpq1, icmpq2;
    extern doublereal sopbl3_(char *, integer *, integer *, integer *)
	    ;
    static real cs;
    static integer bx;
    extern /* Subroutine */ int clalsa_(integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, real *, 
	    integer *, real *, integer *, real *, real *, real *, real *, 
	    integer *, integer *, integer *, integer *, real *, real *, real *
	    , real *, integer *, integer *);
    static real sn;
    extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, complex *, integer *, integer *);
    static integer st;
    extern /* Subroutine */ int slasda_(integer *, integer *, integer *, 
	    integer *, real *, real *, real *, integer *, real *, integer *, 
	    real *, real *, real *, real *, integer *, integer *, integer *, 
	    integer *, real *, real *, real *, real *, integer *, integer *);
    extern doublereal slamch_(char *);
    static integer vt;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *), slascl_(char *, 
	    integer *, integer *, real *, real *, integer *, integer *, real *
	    , integer *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    static integer givcol;
    extern /* Subroutine */ int slasdq_(char *, integer *, integer *, integer 
	    *, integer *, integer *, real *, real *, real *, integer *, real *
	    , integer *, real *, integer *, real *, integer *), 
	    slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *), slartg_(real *, real *, real *, real *, real *
	    );
    static real orgnrm;
    static integer givnum;
    extern doublereal slanst_(char *, integer *, real *, real *);
    extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
    static integer givptr, nm1, nrwork, irwwrk, smlszp, st1;
    static real eps;
    static integer iwk;
    static real tol;


#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]


/*  -- LAPACK routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

    CLALSD uses the singular value decomposition of A to solve the least   
    squares problem of finding X to minimize the Euclidean norm of each   
    column of A*X-B, where A is N-by-N upper bidiagonal, and X and B   
    are N-by-NRHS. The solution X overwrites B.   

    The singular values of A smaller than RCOND times the largest   
    singular value are treated as zero in solving the least squares   
    problem; in this case a minimum norm solution is returned.   
    The actual singular values are returned in D in ascending order.   

    This code makes very mild assumptions about floating point   
    arithmetic. It will work on machines with a guard digit in   
    add/subtract, or on those binary machines without guard digits   
    which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.   
    It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   

    UPLO   (input) CHARACTER*1   
           = 'U': D and E define an upper bidiagonal matrix.   
           = 'L': D and E define a  lower bidiagonal matrix.   

    SMLSIZ (input) INTEGER   
           The maximum size of the subproblems at the bottom of the   
           computation tree.   

    N      (input) INTEGER   
           The dimension of the  bidiagonal matrix.  N >= 0.   

    NRHS   (input) INTEGER   
           The number of columns of B. NRHS must be at least 1.   

    D      (input/output) REAL array, dimension (N)   
           On entry D contains the main diagonal of the bidiagonal   
           matrix. On exit, if INFO = 0, D contains its singular values.   

    E      (input) REAL array, dimension (N-1)   
           Contains the super-diagonal entries of the bidiagonal matrix.   
           On exit, E has been destroyed.   

    B      (input/output) REAL array, dimension (LDB,NRHS)   
           On input, B contains the right hand sides of the least   
           squares problem. On output, B contains the solution X.   

    LDB    (input) INTEGER   
           The leading dimension of B in the calling subprogram.   
           LDB must be at least max(1,N).   

    RCOND  (input) REAL   
           The singular values of A less than or equal to RCOND times   
           the largest singular value are treated as zero in solving   
           the least squares problem. If RCOND is negative,   
           machine precision is used instead.   
           For example, if diag(S)*X=B were the least squares problem,   
           where diag(S) is a diagonal matrix of singular values, the   
           solution would be X(i) = B(i) / S(i) if S(i) is greater than   
           RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to   
           RCOND*max(S).   

    RANK   (output) INTEGER   
           The number of singular values of A greater than RCOND times   
           the largest singular value.   

    WORK   (workspace) COMPLEX array, dimension at least   
           (N * NRHS).   

    RWORK  (workspace) REAL array, dimension at least   
           (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2),   
           where   
           NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )   

    IWORK  (workspace) INTEGER array, dimension at least   
           (3*N*NLVL + 11*N).   

    INFO   (output) INTEGER   
           = 0:  successful exit.   
           < 0:  if INFO = -i, the i-th argument had an illegal value.   
           > 0:  The algorithm failed to compute an singular value while   
                 working on the submatrix lying in rows and columns   
                 INFO/(N+1) through MOD(INFO,N+1).   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 1) {
	*info = -4;
    } else if (*ldb < 1 || *ldb < *n) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CLALSD", &i__1);
	return 0;
    }

    eps = slamch_("Epsilon");

/*     Set up the tolerance. */

    if (*rcond <= 0.f || *rcond >= 1.f) {
	*rcond = eps;
    }

    *rank = 0;

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    } else if (*n == 1) {
	if (d__[1] == 0.f) {
	    claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
	} else {
	    *rank = 1;
	    latime_1.ops += (real) (*nrhs << 1);
	    clascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[
		    b_offset], ldb, info);
	    d__[1] = dabs(d__[1]);
	}
	return 0;
    }

/*     Rotate the matrix if it is lower bidiagonal. */

    if (*(unsigned char *)uplo == 'L') {
	latime_1.ops += (real) ((*n - 1) * 6);
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
	    d__[i__] = r__;
	    e[i__] = sn * d__[i__ + 1];
	    d__[i__ + 1] = cs * d__[i__ + 1];
	    if (*nrhs == 1) {
		latime_1.ops += 12.f;
		csrot_(&c__1, &b_ref(i__, 1), &c__1, &b_ref(i__ + 1, 1), &
			c__1, &cs, &sn);
	    } else {
		rwork[(i__ << 1) - 1] = cs;
		rwork[i__ * 2] = sn;
	    }
/* L10: */
	}
	if (*nrhs > 1) {
	    latime_1.ops += (real) ((*n - 1) * 12 * *nrhs);
	    i__1 = *nrhs;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = *n - 1;
		for (j = 1; j <= i__2; ++j) {
		    cs = rwork[(j << 1) - 1];
		    sn = rwork[j * 2];
		    csrot_(&c__1, &b_ref(j, i__), &c__1, &b_ref(j + 1, i__), &
			    c__1, &cs, &sn);
/* L20: */
		}
/* L30: */
	    }
	}
    }

/*     Scale. */

    nm1 = *n - 1;
    orgnrm = slanst_("M", n, &d__[1], &e[1]);
    if (orgnrm == 0.f) {
	claset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
	return 0;
    }

    latime_1.ops += (real) (*n + nm1);
    slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info);
    slascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1, 
	    info);

/*     If N is smaller than the minimum divide size SMLSIZ, then solve   
       the problem with another solver. */

    if (*n <= *smlsiz) {
	irwu = 1;
	irwvt = irwu + *n * *n;
	irwwrk = irwvt + *n * *n;
	irwrb = irwwrk;
	irwib = irwrb + *n * *nrhs;
	irwb = irwib + *n * *nrhs;
	slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n);
	slaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n);
	slasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n, 
		&rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info);
	if (*info != 0) {
	    return 0;
	}

/*        In the real version, B is passed to SLASDQ and multiplied   
          internally by Q'. Here B is complex and that product is   
          computed below in two steps (real and imaginary parts). */

	j = irwb - 1;
	i__1 = *nrhs;
	for (jcol = 1; jcol <= i__1; ++jcol) {
	    i__2 = *n;
	    for (jrow = 1; jrow <= i__2; ++jrow) {
		++j;
		i__3 = b_subscr(jrow, jcol);
		rwork[j] = b[i__3].r;
/* L40: */
	    }
/* L50: */
	}
	latime_1.ops += sopbl3_("SGEMM ", n, nrhs, n);
	sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
		 &c_b35, &rwork[irwrb], n);
	j = irwb - 1;
	i__1 = *nrhs;
	for (jcol = 1; jcol <= i__1; ++jcol) {
	    i__2 = *n;
	    for (jrow = 1; jrow <= i__2; ++jrow) {
		++j;
		rwork[j] = r_imag(&b_ref(jrow, jcol));
/* L60: */
	    }
/* L70: */
	}
	latime_1.ops += sopbl3_("SGEMM ", n, nrhs, n);
	sgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n,
		 &c_b35, &rwork[irwib], n);
	jreal = irwrb - 1;
	jimag = irwib - 1;
	i__1 = *nrhs;
	for (jcol = 1; jcol <= i__1; ++jcol) {
	    i__2 = *n;
	    for (jrow = 1; jrow <= i__2; ++jrow) {
		++jreal;
		++jimag;
		i__3 = b_subscr(jrow, jcol);
		i__4 = jreal;
		i__5 = jimag;
		q__1.r = rwork[i__4], q__1.i = rwork[i__5];
		b[i__3].r = q__1.r, b[i__3].i = q__1.i;
/* L80: */
	    }
/* L90: */
	}

	latime_1.ops += 1.f;
	tol = *rcond * (r__1 = d__[isamax_(n, &d__[1], &c__1)], dabs(r__1));
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (d__[i__] <= tol) {
		claset_("A", &c__1, nrhs, &c_b1, &c_b1, &b_ref(i__, 1), ldb);
	    } else {
		latime_1.ops += (real) (*nrhs * 6);
		clascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &
			b_ref(i__, 1), ldb, info);
		++(*rank);
	    }
/* L100: */
	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -