📄 sgelsd.c
字号:
} else {
/* Path 2 - remaining underdetermined cases. */
maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD", " ", m,
n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "SORMBR"
, "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORMBR",
"PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
maxwrk = max(i__1,i__2);
}
/* Computing MAX */
i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1,i__2),
i__2 = *m * 3 + wlalsd;
minwrk = max(i__1,i__2);
}
minwrk = min(minwrk,maxwrk);
work[1] = (real) maxwrk;
if (*lwork < minwrk && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGELSD", &i__1);
return 0;
} else if (lquery) {
goto L10;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0) {
*rank = 0;
return 0;
}
/* Get machine parameters. */
eps = slamch_("P");
sfmin = slamch_("S");
smlnum = sfmin / eps;
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {
/* Scale matrix norm up to SMLNUM. */
slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {
/* Scale matrix norm down to BIGNUM. */
slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {
/* Matrix all zero. Return zero solution. */
i__1 = max(*m,*n);
slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[b_offset], ldb);
slaset_("F", &minmn, &c__1, &c_b82, &c_b82, &s[1], &c__1);
*rank = 0;
goto L10;
}
/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {
/* Scale matrix norm up to SMLNUM. */
slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 1;
} else if (bnrm > bignum) {
/* Scale matrix norm down to BIGNUM. */
slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info);
ibscl = 2;
}
/* If M < N make sure certain entries of B are zero. */
if (*m < *n) {
i__1 = *n - *m;
slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b_ref(*m + 1, 1), ldb);
}
/* Overdetermined case. */
if (*m >= *n) {
/* Path 1 - overdetermined or exactly determined. */
mm = *m;
if (*m >= mnthr) {
/* Path 1a - overdetermined, with many more rows than columns. */
mm = *n;
itau = 1;
nwork = itau + *n;
/* Compute A=Q*R.
(Workspace: need 2*N, prefer N+N*NB) */
i__1 = *lwork - nwork + 1;
sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
info);
/* Multiply B by transpose(Q).
(Workspace: need N+NRHS, prefer N+NRHS*NB) */
i__1 = *lwork - nwork + 1;
sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[nwork], &i__1, info);
/* Zero out below R. */
if (*n > 1) {
i__1 = *n - 1;
i__2 = *n - 1;
slaset_("L", &i__1, &i__2, &c_b82, &c_b82, &a_ref(2, 1), lda);
}
}
ie = 1;
itauq = ie + *n;
itaup = itauq + *n;
nwork = itaup + *n;
/* Bidiagonalize R in A.
(Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
i__1 = *lwork - nwork + 1;
sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors of R.
(Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
i__1 = *lwork - nwork + 1;
sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
&b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
slalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb,
rcond, rank, &work[nwork], &iwork[1], info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of R. */
i__1 = *lwork - nwork + 1;
sormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
b[b_offset], ldb, &work[nwork], &i__1, info);
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
i__1,*nrhs), i__2 = *n - *m * 3;
if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {
/* Path 2a - underdetermined, with many more columns than rows
and sufficient workspace for an efficient algorithm. */
ldwork = *m;
/* Computing MAX
Computing MAX */
i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =
max(i__3,*nrhs), i__4 = *n - *m * 3;
i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda +
*m + *m * *nrhs;
if (*lwork >= max(i__1,i__2)) {
ldwork = *lda;
}
itau = 1;
nwork = *m + 1;
/* Compute A=L*Q.
(Workspace: need 2*M, prefer M+M*NB) */
i__1 = *lwork - nwork + 1;
sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
info);
il = nwork;
/* Copy L to WORK(IL), zeroing out above its diagonal. */
slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
i__1 = *m - 1;
i__2 = *m - 1;
slaset_("U", &i__1, &i__2, &c_b82, &c_b82, &work[il + ldwork], &
ldwork);
ie = il + ldwork * *m;
itauq = ie + *m;
itaup = itauq + *m;
nwork = itaup + *m;
/* Bidiagonalize L in WORK(IL).
(Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
i__1 = *lwork - nwork + 1;
sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
&work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors of L.
(Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
i__1 = *lwork - nwork + 1;
sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
slalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
ldb, rcond, rank, &work[nwork], &iwork[1], info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of L. */
i__1 = *lwork - nwork + 1;
sormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Zero out below first M rows of B. */
i__1 = *n - *m;
slaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b_ref(*m + 1, 1), ldb);
nwork = itau + *m;
/* Multiply transpose(Q) by B.
(Workspace: need M+NRHS, prefer M+NRHS*NB) */
i__1 = *lwork - nwork + 1;
sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[nwork], &i__1, info);
} else {
/* Path 2 - remaining underdetermined cases. */
ie = 1;
itauq = ie + *m;
itaup = itauq + *m;
nwork = itaup + *m;
/* Bidiagonalize A.
(Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
i__1 = *lwork - nwork + 1;
sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
work[itaup], &work[nwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors.
(Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
i__1 = *lwork - nwork + 1;
sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
, &b[b_offset], ldb, &work[nwork], &i__1, info);
/* Solve the bidiagonal least squares problem. */
slalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
ldb, rcond, rank, &work[nwork], &iwork[1], info);
if (*info != 0) {
goto L10;
}
/* Multiply B by right bidiagonalizing vectors of A. */
i__1 = *lwork - nwork + 1;
sormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
, &b[b_offset], ldb, &work[nwork], &i__1, info);
}
}
/* Undo scaling. */
if (iascl == 1) {
slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
minmn, info);
} else if (iascl == 2) {
slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info);
slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
minmn, info);
}
if (ibscl == 1) {
slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
} else if (ibscl == 2) {
slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info);
}
L10:
work[1] = (real) maxwrk;
return 0;
/* End of SGELSD */
} /* sgelsd_ */
#undef b_ref
#undef a_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -