📄 slalsa.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static real c_b9 = 1.f;
static real c_b10 = 0.f;
static integer c__2 = 2;
/* Subroutine */ int slalsa_(integer *icompq, integer *smlsiz, integer *n,
integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, real *
u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *
z__, real *poles, integer *givptr, integer *givcol, integer *ldgcol,
integer *perm, real *givnum, real *c__, real *s, real *work, integer *
iwork, integer *info)
{
/* System generated locals */
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
i__2;
/* Builtin functions */
integer pow_ii(integer *, integer *);
/* Local variables */
static integer nlvl, sqre, i__, j, inode, ndiml;
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
integer *, real *, real *, integer *, real *, integer *, real *,
real *, integer *);
static integer ndimr, i1;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), slals0_(integer *, integer *, integer *, integer *,
integer *, real *, integer *, real *, integer *, integer *,
integer *, integer *, integer *, real *, integer *, real *, real *
, real *, real *, integer *, real *, real *, real *, integer *);
extern doublereal sopbl3_(char *, integer *, integer *, integer *)
;
static integer ic, lf, nd, ll, nl, nr;
extern /* Subroutine */ int xerbla_(char *, integer *), slasdt_(
integer *, integer *, integer *, integer *, integer *, integer *,
integer *);
static integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
#define difl_ref(a_1,a_2) difl[(a_2)*difl_dim1 + a_1]
#define difr_ref(a_1,a_2) difr[(a_2)*difr_dim1 + a_1]
#define perm_ref(a_1,a_2) perm[(a_2)*perm_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
#define poles_ref(a_1,a_2) poles[(a_2)*poles_dim1 + a_1]
#define bx_ref(a_1,a_2) bx[(a_2)*bx_dim1 + a_1]
#define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1]
#define givcol_ref(a_1,a_2) givcol[(a_2)*givcol_dim1 + a_1]
#define givnum_ref(a_1,a_2) givnum[(a_2)*givnum_dim1 + a_1]
/* -- LAPACK routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
SLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, SLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by SLALSA.
Arguments
=========
ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B (input) REAL array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
LDB (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX (output) REAL array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX (input) INTEGER
The leading dimension of BX.
U (input) REAL array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
K (input) INTEGER array, dimension ( N ).
DIFL (input) REAL array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z (input) REAL array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S (input) REAL array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
WORK (workspace) REAL array.
The dimension must be at least N.
IWORK (workspace) INTEGER array.
The dimension must be at least 3 * N
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
=====================================================================
Test the input parameters.
Parameter adjustments */
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
bx_dim1 = *ldbx;
bx_offset = 1 + bx_dim1 * 1;
bx -= bx_offset;
givnum_dim1 = *ldu;
givnum_offset = 1 + givnum_dim1 * 1;
givnum -= givnum_offset;
poles_dim1 = *ldu;
poles_offset = 1 + poles_dim1 * 1;
poles -= poles_offset;
z_dim1 = *ldu;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
difr_dim1 = *ldu;
difr_offset = 1 + difr_dim1 * 1;
difr -= difr_offset;
difl_dim1 = *ldu;
difl_offset = 1 + difl_dim1 * 1;
difl -= difl_offset;
vt_dim1 = *ldu;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
--k;
--givptr;
perm_dim1 = *ldgcol;
perm_offset = 1 + perm_dim1 * 1;
perm -= perm_offset;
givcol_dim1 = *ldgcol;
givcol_offset = 1 + givcol_dim1 * 1;
givcol -= givcol_offset;
--c__;
--s;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*smlsiz < 3) {
*info = -2;
} else if (*n < *smlsiz) {
*info = -3;
} else if (*nrhs < 1) {
*info = -4;
} else if (*ldb < *n) {
*info = -6;
} else if (*ldbx < *n) {
*info = -8;
} else if (*ldu < *n) {
*info = -10;
} else if (*ldgcol < *n) {
*info = -19;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLALSA", &i__1);
return 0;
}
/* Book-keeping and setting up the computation tree. */
inode = 1;
ndiml = inode + *n;
ndimr = ndiml + *n;
slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
smlsiz);
/* The following code applies back the left singular vector factors.
For applying back the right singular vector factors, go to 50. */
if (*icompq == 1) {
goto L50;
}
/* The nodes on the bottom level of the tree were solved by SLASDQ.
The corresponding left and right singular vector matrices are in
explicit form. First apply back the left singular vector matrices. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
/* IC : center row of each node
NL : number of rows of left subproblem
NR : number of rows of right subproblem
NLF: starting row of the left subproblem
NRF: starting row of the right subproblem */
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nr = iwork[ndimr + i1];
nlf = ic - nl;
nrf = ic + 1;
latime_1.ops += sopbl3_("SGEMM ", &nl, nrhs, &nl);
latime_1.ops += sopbl3_("SGEMM ", &nr, nrhs, &nr);
sgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u_ref(nlf, 1), ldu, &b_ref(
nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx);
sgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u_ref(nrf, 1), ldu, &b_ref(
nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx);
/* L10: */
}
/* Next copy the rows of B that correspond to unchanged rows
in the bidiagonal matrix to BX. */
i__1 = nd;
for (i__ = 1; i__ <= i__1; ++i__) {
ic = iwork[inode + i__ - 1];
scopy_(nrhs, &b_ref(ic, 1), ldb, &bx_ref(ic, 1), ldbx);
/* L20: */
}
/* Finally go through the left singular vector matrices of all
the other subproblems bottom-up on the tree. */
j = pow_ii(&c__2, &nlvl);
sqre = 0;
for (lvl = nlvl; lvl >= 1; --lvl) {
lvl2 = (lvl << 1) - 1;
/* find the first node LF and last node LL on
the current level LVL */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__1 = lvl - 1;
lf = pow_ii(&c__2, &i__1);
ll = (lf << 1) - 1;
}
i__1 = ll;
for (i__ = lf; i__ <= i__1; ++i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
--j;
slals0_(icompq, &nl, &nr, &sqre, nrhs, &bx_ref(nlf, 1), ldbx, &
b_ref(nlf, 1), ldb, &perm_ref(nlf, lvl), &givptr[j], &
givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2),
ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), &
difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], &
s[j], &work[1], info);
/* L30: */
}
/* L40: */
}
goto L90;
/* ICOMPQ = 1: applying back the right singular vector factors. */
L50:
/* First now go through the right singular vector matrices of all
the tree nodes top-down. */
j = 0;
i__1 = nlvl;
for (lvl = 1; lvl <= i__1; ++lvl) {
lvl2 = (lvl << 1) - 1;
/* Find the first node LF and last node LL on
the current level LVL. */
if (lvl == 1) {
lf = 1;
ll = 1;
} else {
i__2 = lvl - 1;
lf = pow_ii(&c__2, &i__2);
ll = (lf << 1) - 1;
}
i__2 = lf;
for (i__ = ll; i__ >= i__2; --i__) {
im1 = i__ - 1;
ic = iwork[inode + im1];
nl = iwork[ndiml + im1];
nr = iwork[ndimr + im1];
nlf = ic - nl;
nrf = ic + 1;
if (i__ == ll) {
sqre = 0;
} else {
sqre = 1;
}
++j;
slals0_(icompq, &nl, &nr, &sqre, nrhs, &b_ref(nlf, 1), ldb, &
bx_ref(nlf, 1), ldbx, &perm_ref(nlf, lvl), &givptr[j], &
givcol_ref(nlf, lvl2), ldgcol, &givnum_ref(nlf, lvl2),
ldu, &poles_ref(nlf, lvl2), &difl_ref(nlf, lvl), &
difr_ref(nlf, lvl2), &z___ref(nlf, lvl), &k[j], &c__[j], &
s[j], &work[1], info);
/* L60: */
}
/* L70: */
}
/* The nodes on the bottom level of the tree were solved by SLASDQ.
The corresponding right singular vector matrices are in explicit
form. Apply them back. */
ndb1 = (nd + 1) / 2;
i__1 = nd;
for (i__ = ndb1; i__ <= i__1; ++i__) {
i1 = i__ - 1;
ic = iwork[inode + i1];
nl = iwork[ndiml + i1];
nr = iwork[ndimr + i1];
nlp1 = nl + 1;
if (i__ == nd) {
nrp1 = nr;
} else {
nrp1 = nr + 1;
}
nlf = ic - nl;
nrf = ic + 1;
latime_1.ops += sopbl3_("SGEMM ", &nlp1, nrhs, &nlp1);
latime_1.ops += sopbl3_("SGEMM ", &nrp1, nrhs, &nrp1);
sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt_ref(nlf, 1), ldu, &
b_ref(nlf, 1), ldb, &c_b10, &bx_ref(nlf, 1), ldbx);
sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt_ref(nrf, 1), ldu, &
b_ref(nrf, 1), ldb, &c_b10, &bx_ref(nrf, 1), ldbx);
/* L80: */
}
L90:
return 0;
/* End of SLALSA */
} /* slalsa_ */
#undef givnum_ref
#undef givcol_ref
#undef vt_ref
#undef bx_ref
#undef poles_ref
#undef z___ref
#undef u_ref
#undef b_ref
#undef perm_ref
#undef difr_ref
#undef difl_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -