📄 dgelsy.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
struct {
doublereal opcnt[6], timng[6];
} lstime_;
#define lstime_1 lstime_
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static doublereal c_b31 = 0.;
static integer c__2 = 2;
static doublereal c_b67 = 1.;
/* Subroutine */ int dgelsy_(integer *m, integer *n, integer *nrhs,
doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
lwork, integer *info)
{
/* Initialized data */
static integer gelsy = 1;
static integer geqp3 = 2;
static integer ormqr = 4;
static integer ormrz = 6;
static integer trsm = 5;
static integer tzrzf = 3;
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
doublereal d__1, d__2;
/* Local variables */
static doublereal anrm, bnrm, smin, smax;
static integer i__, j, iascl, ibscl;
extern doublereal dopla_(char *, integer *, integer *, integer *, integer
*, integer *);
static integer ismin;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
static integer ismax;
static doublereal c1, c2;
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *), dlaic1_(
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *);
static doublereal wsize, s1, s2, t1, t2;
extern doublereal dopbl3_(char *, integer *, integer *, integer *)
;
extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *,
integer *, integer *, doublereal *, doublereal *, integer *,
integer *), dlabad_(doublereal *, doublereal *);
static integer nb;
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
static integer mn;
extern doublereal dsecnd_(void);
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *), dlaset_(char *, integer *, integer
*, doublereal *, doublereal *, doublereal *, integer *),
xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
static doublereal bignum;
static integer nb1, nb2, nb3, nb4;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
static doublereal sminpr, smaxpr, smlnum;
extern /* Subroutine */ int dormrz_(char *, char *, integer *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *);
static integer lwkopt;
static logical lquery;
extern /* Subroutine */ int dtzrzf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
/* -- LAPACK driver routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation counts and timings
Purpose
=======
DGELSY computes the minimum-norm solution to a real linear least
squares problem:
min || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N
matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/RCOND. The order of R11, RANK,
is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated
by orthogonal transformations from the right, arriving at the
complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
This routine is basically identical to the original xGELSX except
three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
Arguments
=========
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of
columns of matrices B and X. NRHS >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the M-by-NRHS right hand side matrix B.
On exit, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of AP, otherwise column i is a free column.
On exit, if JPVT(i) = k, then the i-th column of AP
was the k-th column of A.
RCOND (input) DOUBLE PRECISION
RCOND is used to determine the effective rank of A, which
is defined as the order of the largest leading triangular
submatrix R11 in the QR factorization with pivoting of A,
whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix
R11. This is the same as the order of the submatrix T11
in the complete orthogonal factorization of A.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK.
The unblocked strategy requires that:
LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
where MN = min( M, N ).
The block algorithm requires that:
LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
where NB is an upper bound on the blocksize returned
by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
and DORMRZ.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: If INFO = -i, the i-th argument had an illegal value.
Further Details
===============
Based on contributions by
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
=====================================================================
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--jpvt;
--work;
/* Function Body */
mn = min(*m,*n);
ismin = mn + 1;
ismax = (mn << 1) + 1;
/* Test the input arguments. */
*info = 0;
nb1 = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb2 = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb3 = ilaenv_(&c__1, "DORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
1);
nb4 = ilaenv_(&c__1, "DORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
1);
/* Computing MAX */
i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
nb = max(i__1,nb4);
/* Computing MAX */
i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2),
i__2 = (mn << 1) + nb * *nrhs;
lwkopt = max(i__1,i__2);
work[1] = (doublereal) lwkopt;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = max(1,*m);
if (*ldb < max(i__1,*n)) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -