📄 stl_tree.h
字号:
template<typename _InputIterator> void insert_equal(_InputIterator __first, _InputIterator __last); void erase(iterator __position); size_type erase(const key_type& __x); void erase(iterator __first, iterator __last); void erase(const key_type* __first, const key_type* __last); void clear() { _M_erase(_M_begin()); _M_leftmost() = _M_end(); _M_root() = 0; _M_rightmost() = _M_end(); _M_impl._M_node_count = 0; } // Set operations. iterator find(const key_type& __x); const_iterator find(const key_type& __x) const; size_type count(const key_type& __x) const; iterator lower_bound(const key_type& __x); const_iterator lower_bound(const key_type& __x) const; iterator upper_bound(const key_type& __x); const_iterator upper_bound(const key_type& __x) const; pair<iterator,iterator> equal_range(const key_type& __x); pair<const_iterator, const_iterator> equal_range(const key_type& __x) const; // Debugging. bool __rb_verify() const; }; template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator==(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return __x.size() == __y.size() && equal(__x.begin(), __x.end(), __y.begin()); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator<(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator!=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return !(__x == __y); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator>(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return __y < __x; } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator<=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return !(__y < __x); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline bool operator>=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { return !(__x < __y); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> inline void swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x, _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y) { __x.swap(__y); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: operator=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x) { if (this != &__x) { // Note that _Key may be a constant type. clear(); _M_impl._M_key_compare = __x._M_impl._M_key_compare; if (__x._M_root() != 0) { _M_root() = _M_copy(__x._M_begin(), _M_end()); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_impl._M_node_count = __x._M_impl._M_node_count; } } return *this; } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: _M_insert(_Base_ptr __x, _Base_ptr __p, const _Val& __v) { _Link_type __z = _M_create_node(__v); bool __insert_left; __insert_left = __x != 0 || __p == _M_end() || _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__p)); _Rb_tree_insert_and_rebalance(__insert_left, __z, __p, this->_M_impl._M_header); ++_M_impl._M_node_count; return iterator(__z); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: insert_equal(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { __y = __x; __x = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert(__x, __y, __v); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> void _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __t) { if (_M_root() == 0) { if (__t._M_root() != 0) { _M_root() = __t._M_root(); _M_leftmost() = __t._M_leftmost(); _M_rightmost() = __t._M_rightmost(); _M_root()->_M_parent = _M_end(); __t._M_root() = 0; __t._M_leftmost() = __t._M_end(); __t._M_rightmost() = __t._M_end(); } } else if (__t._M_root() == 0) { __t._M_root() = _M_root(); __t._M_leftmost() = _M_leftmost(); __t._M_rightmost() = _M_rightmost(); __t._M_root()->_M_parent = __t._M_end(); _M_root() = 0; _M_leftmost() = _M_end(); _M_rightmost() = _M_end(); } else { std::swap(_M_root(),__t._M_root()); std::swap(_M_leftmost(),__t._M_leftmost()); std::swap(_M_rightmost(),__t._M_rightmost()); _M_root()->_M_parent = _M_end(); __t._M_root()->_M_parent = __t._M_end(); } // No need to swap header's color as it does not change. std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count); std::swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> pair<typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator, bool> _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: insert_unique(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) if (__j == begin()) return pair<iterator,bool>(_M_insert(__x, __y, __v), true); else --__j; if (_M_impl._M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair<iterator,bool>(_M_insert(__x, __y, __v), true); return pair<iterator,bool>(__j, false); } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: insert_unique(iterator __position, const _Val& __v) { if (__position._M_node == _M_leftmost()) { // begin() if (size() > 0 && _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) return _M_insert(__position._M_node, __position._M_node, __v); // First argument just needs to be non-null. else return insert_unique(__v).first; } else if (__position._M_node == _M_end()) { // end() if (_M_impl._M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v))) return _M_insert(0, _M_rightmost(), __v); else return insert_unique(__v).first; } else { iterator __before = __position; --__before; if (_M_impl._M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v)) && _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert(0, __before._M_node, __v); else return _M_insert(__position._M_node, __position._M_node, __v); // First argument just needs to be non-null. } else return insert_unique(__v).first; } } template<typename _Key, typename _Val, typename _KeyOfValue, typename _Compare, typename _Alloc> typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>:: insert_equal(iterator __position, const _Val& __v) { if (__position._M_node == _M_leftmost()) { // begin() if (size() > 0 && !_M_impl._M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null else return insert_equal(__v); } else if (__position._M_node == _M_end()) { // end() if (!_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost()))) return _M_insert(0, _M_rightmost(), __v); else return insert_equal(__v); } else { iterator __before = __position; --__before; if (!_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node)) && !_M_impl._M_key_compare(_S_key(__position._M_node),
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -