📄 mt_allocator.h
字号:
__bin._M_first[__thread_id] = __bin._M_first[0]; if (__block_count >= __bin._M_free[0]) { __bin._M_free[__thread_id] = __bin._M_free[0]; __bin._M_free[0] = 0; __bin._M_first[0] = NULL; } else { __bin._M_free[__thread_id] = __block_count; __bin._M_free[0] -= __block_count; --__block_count; __block = __bin._M_first[0]; while (__block_count-- > 0) __block = __block->_M_next; __bin._M_first[0] = __block->_M_next; __block->_M_next = NULL; } __gthread_mutex_unlock(__bin._M_mutex); } } else#endif { void* __v = ::operator new(_S_options._M_chunk_size); __bin._M_first[0] = static_cast<_Block_record*>(__v); --__block_count; __block = __bin._M_first[0]; while (__block_count-- > 0) { char* __c = reinterpret_cast<char*>(__block) + __bin_size; __block->_M_next = reinterpret_cast<_Block_record*>(__c); __block = __block->_M_next; } __block->_M_next = NULL; } } __block = __bin._M_first[__thread_id]; __bin._M_first[__thread_id] = __bin._M_first[__thread_id]->_M_next;#ifdef __GTHREADS if (__gthread_active_p()) { __block->_M_thread_id = __thread_id; --__bin._M_free[__thread_id]; ++__bin._M_used[__thread_id]; }#endif char* __c = reinterpret_cast<char*>(__block) + _S_options._M_align; return static_cast<_Tp*>(static_cast<void*>(__c)); } template<typename _Tp> void __mt_alloc<_Tp>:: deallocate(pointer __p, size_type __n) { // Requests larger than _M_max_bytes are handled by operators // new/delete directly. const size_t __bytes = __n * sizeof(_Tp); if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new) { ::operator delete(__p); return; } // Round up to power of 2 and figure out which bin to use. const size_t __which = _S_binmap[__bytes]; const _Bin_record& __bin = _S_bin[__which]; char* __c = reinterpret_cast<char*>(__p) - _S_options._M_align; _Block_record* __block = reinterpret_cast<_Block_record*>(__c); #ifdef __GTHREADS if (__gthread_active_p()) { // Calculate the number of records to remove from our freelist: // in order to avoid too much contention we wait until the // number of records is "high enough". const size_t __thread_id = _S_get_thread_id(); long __remove = ((__bin._M_free[__thread_id] * _S_options._M_freelist_headroom) - __bin._M_used[__thread_id]); if (__remove > static_cast<long>(100 * (_S_bin_size - __which) * _S_options._M_freelist_headroom) && __remove > static_cast<long>(__bin._M_free[__thread_id])) { _Block_record* __tmp = __bin._M_first[__thread_id]; _Block_record* __first = __tmp; __remove /= _S_options._M_freelist_headroom; const long __removed = __remove; --__remove; while (__remove-- > 0) __tmp = __tmp->_M_next; __bin._M_first[__thread_id] = __tmp->_M_next; __bin._M_free[__thread_id] -= __removed; __gthread_mutex_lock(__bin._M_mutex); __tmp->_M_next = __bin._M_first[0]; __bin._M_first[0] = __first; __bin._M_free[0] += __removed; __gthread_mutex_unlock(__bin._M_mutex); } // Return this block to our list and update counters and // owner id as needed. --__bin._M_used[__block->_M_thread_id]; __block->_M_next = __bin._M_first[__thread_id]; __bin._M_first[__thread_id] = __block; ++__bin._M_free[__thread_id]; } else#endif { // Single threaded application - return to global pool. __block->_M_next = __bin._M_first[0]; __bin._M_first[0] = __block; } } template<typename _Tp> void __mt_alloc<_Tp>:: _S_initialize() { // This method is called on the first allocation (when _S_init is still // false) to create the bins. // Ensure that the static initialization of _S_options has // happened. This depends on (a) _M_align == 0 being an invalid // value that is only present at startup, and (b) the real // static initialization that happens later not actually // changing anything. if (_S_options._M_align == 0) new (&_S_options) _Tune; // _M_force_new must not change after the first allocate(), // which in turn calls this method, so if it's false, it's false // forever and we don't need to return here ever again. if (_S_options._M_force_new) { _S_init = true; return; } // Calculate the number of bins required based on _M_max_bytes. // _S_bin_size is statically-initialized to one. size_t __bin_size = _S_options._M_min_bin; while (_S_options._M_max_bytes > __bin_size) { __bin_size <<= 1; ++_S_bin_size; } // Setup the bin map for quick lookup of the relevant bin. const size_t __j = (_S_options._M_max_bytes + 1) * sizeof(_Binmap_type); _S_binmap = static_cast<_Binmap_type*>(::operator new(__j)); _Binmap_type* __bp = _S_binmap; _Binmap_type __bin_max = _S_options._M_min_bin; _Binmap_type __bint = 0; for (_Binmap_type __ct = 0; __ct <= _S_options._M_max_bytes; ++__ct) { if (__ct > __bin_max) { __bin_max <<= 1; ++__bint; } *__bp++ = __bint; } // Initialize _S_bin and its members. void* __v = ::operator new(sizeof(_Bin_record) * _S_bin_size); _S_bin = static_cast<_Bin_record*>(__v); // If __gthread_active_p() create and initialize the list of // free thread ids. Single threaded applications use thread id 0 // directly and have no need for this.#ifdef __GTHREADS if (__gthread_active_p()) { const size_t __k = sizeof(_Thread_record) * _S_options._M_max_threads; __v = ::operator new(__k); _S_thread_freelist_first = static_cast<_Thread_record*>(__v); // NOTE! The first assignable thread id is 1 since the // global pool uses id 0 size_t __i; for (__i = 1; __i < _S_options._M_max_threads; ++__i) { _Thread_record& __tr = _S_thread_freelist_first[__i - 1]; __tr._M_next = &_S_thread_freelist_first[__i]; __tr._M_id = __i; } // Set last record. _S_thread_freelist_first[__i - 1]._M_next = NULL; _S_thread_freelist_first[__i - 1]._M_id = __i; // Make sure this is initialized.#ifndef __GTHREAD_MUTEX_INIT __GTHREAD_MUTEX_INIT_FUNCTION(&_S_thread_freelist_mutex);#endif // Initialize per thread key to hold pointer to // _S_thread_freelist. __gthread_key_create(&_S_thread_key, _S_destroy_thread_key); const size_t __max_threads = _S_options._M_max_threads + 1; for (size_t __n = 0; __n < _S_bin_size; ++__n) { _Bin_record& __bin = _S_bin[__n]; __v = ::operator new(sizeof(_Block_record*) * __max_threads); __bin._M_first = static_cast<_Block_record**>(__v); __v = ::operator new(sizeof(size_t) * __max_threads); __bin._M_free = static_cast<size_t*>(__v); __v = ::operator new(sizeof(size_t) * __max_threads); __bin._M_used = static_cast<size_t*>(__v); __v = ::operator new(sizeof(__gthread_mutex_t)); __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);#ifdef __GTHREAD_MUTEX_INIT { // Do not copy a POSIX/gthr mutex once in use. __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; *__bin._M_mutex = __tmp; }#else { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }#endif for (size_t __threadn = 0; __threadn < __max_threads; ++__threadn) { __bin._M_first[__threadn] = NULL; __bin._M_free[__threadn] = 0; __bin._M_used[__threadn] = 0; } } } else#endif for (size_t __n = 0; __n < _S_bin_size; ++__n) { _Bin_record& __bin = _S_bin[__n]; __v = ::operator new(sizeof(_Block_record*)); __bin._M_first = static_cast<_Block_record**>(__v); __bin._M_first[0] = NULL; } _S_init = true; } template<typename _Tp> size_t __mt_alloc<_Tp>:: _S_get_thread_id() {#ifdef __GTHREADS // If we have thread support and it's active we check the thread // key value and return its id or if it's not set we take the // first record from _S_thread_freelist and sets the key and // returns it's id. if (__gthread_active_p()) { _Thread_record* __freelist_pos = static_cast<_Thread_record*>(__gthread_getspecific(_S_thread_key)); if (__freelist_pos == NULL) { // Since _S_options._M_max_threads must be larger than // the theoretical max number of threads of the OS the // list can never be empty. __gthread_mutex_lock(&_S_thread_freelist_mutex); __freelist_pos = _S_thread_freelist_first; _S_thread_freelist_first = _S_thread_freelist_first->_M_next; __gthread_mutex_unlock(&_S_thread_freelist_mutex); __gthread_setspecific(_S_thread_key, static_cast<void*>(__freelist_pos)); } return __freelist_pos->_M_id; }#endif // Otherwise (no thread support or inactive) all requests are // served from the global pool 0. return 0; }#ifdef __GTHREADS template<typename _Tp> void __mt_alloc<_Tp>:: _S_destroy_thread_key(void* __freelist_pos) { // Return this thread id record to front of thread_freelist. __gthread_mutex_lock(&_S_thread_freelist_mutex); _Thread_record* __tr = static_cast<_Thread_record*>(__freelist_pos); __tr->_M_next = _S_thread_freelist_first; _S_thread_freelist_first = __tr; __gthread_mutex_unlock(&_S_thread_freelist_mutex); }#endif template<typename _Tp> inline bool operator==(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&) { return true; } template<typename _Tp> inline bool operator!=(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&) { return false; } template<typename _Tp> bool __mt_alloc<_Tp>::_S_init = false; template<typename _Tp> typename __mt_alloc<_Tp>::_Tune __mt_alloc<_Tp>::_S_options; template<typename _Tp> typename __mt_alloc<_Tp>::_Binmap_type* __mt_alloc<_Tp>::_S_binmap; template<typename _Tp> typename __mt_alloc<_Tp>::_Bin_record* volatile __mt_alloc<_Tp>::_S_bin; template<typename _Tp> size_t __mt_alloc<_Tp>::_S_bin_size = 1; // Actual initialization in _S_initialize().#ifdef __GTHREADS template<typename _Tp> __gthread_once_t __mt_alloc<_Tp>::_S_once = __GTHREAD_ONCE_INIT; template<typename _Tp> typename __mt_alloc<_Tp>::_Thread_record* volatile __mt_alloc<_Tp>::_S_thread_freelist_first = NULL; template<typename _Tp> __gthread_key_t __mt_alloc<_Tp>::_S_thread_key; template<typename _Tp> __gthread_mutex_t#ifdef __GTHREAD_MUTEX_INIT __mt_alloc<_Tp>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;#else __mt_alloc<_Tp>::_S_thread_freelist_mutex;#endif#endif} // namespace __gnu_cxx#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -