📄 mt_allocator.h
字号:
// MT-optimized allocator -*- C++ -*-// Copyright (C) 2003, 2004 Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./** @file ext/mt_allocator.h * This file is a GNU extension to the Standard C++ Library. * You should only include this header if you are using GCC 3 or later. */#ifndef _MT_ALLOCATOR_H#define _MT_ALLOCATOR_H 1#include <new>#include <cstdlib>#include <bits/functexcept.h>#include <bits/gthr.h>#include <bits/atomicity.h>namespace __gnu_cxx{ /** * This is a fixed size (power of 2) allocator which - when * compiled with thread support - will maintain one freelist per * size per thread plus a "global" one. Steps are taken to limit * the per thread freelist sizes (by returning excess back to * "global"). * * Further details: * http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html */ template<typename _Tp> class __mt_alloc { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template<typename _Tp1> struct rebind { typedef __mt_alloc<_Tp1> other; }; __mt_alloc() throw() { // XXX } __mt_alloc(const __mt_alloc&) throw() { // XXX } template<typename _Tp1> __mt_alloc(const __mt_alloc<_Tp1>& obj) throw() { // XXX } ~__mt_alloc() throw() { } pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 402. wrong new expression in [some_] allocator::construct void construct(pointer __p, const _Tp& __val) { ::new(__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } pointer allocate(size_type __n, const void* = 0); void deallocate(pointer __p, size_type __n); // Variables used to configure the behavior of the allocator, // assigned and explained in detail below. struct _Tune { // Alignment needed. // NB: In any case must be >= sizeof(_Block_record), that // is 4 on 32 bit machines and 8 on 64 bit machines. size_t _M_align; // Allocation requests (after round-up to power of 2) below // this value will be handled by the allocator. A raw new/ // call will be used for requests larger than this value. size_t _M_max_bytes; // Size in bytes of the smallest bin. // NB: Must be a power of 2 and >= _M_align. size_t _M_min_bin; // In order to avoid fragmenting and minimize the number of // new() calls we always request new memory using this // value. Based on previous discussions on the libstdc++ // mailing list we have choosen the value below. // See http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html size_t _M_chunk_size; // The maximum number of supported threads. Our Linux 2.4.18 // reports 4070 in /proc/sys/kernel/threads-max size_t _M_max_threads; // Each time a deallocation occurs in a threaded application // we make sure that there are no more than // _M_freelist_headroom % of used memory on the freelist. If // the number of additional records is more than // _M_freelist_headroom % of the freelist, we move these // records back to the global pool. size_t _M_freelist_headroom; // Set to true forces all allocations to use new(). bool _M_force_new; explicit _Tune() : _M_align(8), _M_max_bytes(128), _M_min_bin(8), _M_chunk_size(4096 - 4 * sizeof(void*)), _M_max_threads(4096), _M_freelist_headroom(10), _M_force_new(getenv("GLIBCXX_FORCE_NEW") ? true : false) { } explicit _Tune(size_t __align, size_t __maxb, size_t __minbin, size_t __chunk, size_t __maxthreads, size_t __headroom, bool __force) : _M_align(__align), _M_max_bytes(__maxb), _M_min_bin(__minbin), _M_chunk_size(__chunk), _M_max_threads(__maxthreads), _M_freelist_headroom(__headroom), _M_force_new(__force) { } }; private: // We need to create the initial lists and set up some variables // before we can answer to the first request for memory.#ifdef __GTHREADS static __gthread_once_t _S_once;#endif static bool _S_init; static void _S_initialize(); // Configuration options. static _Tune _S_options; static const _Tune _S_get_options() { return _S_options; } static void _S_set_options(_Tune __t) { if (!_S_init) _S_options = __t; } // Using short int as type for the binmap implies we are never // caching blocks larger than 65535 with this allocator typedef unsigned short int _Binmap_type; static _Binmap_type* _S_binmap; // Each requesting thread is assigned an id ranging from 1 to // _S_max_threads. Thread id 0 is used as a global memory pool. // In order to get constant performance on the thread assignment // routine, we keep a list of free ids. When a thread first // requests memory we remove the first record in this list and // stores the address in a __gthread_key. When initializing the // __gthread_key we specify a destructor. When this destructor // (i.e. the thread dies) is called, we return the thread id to // the front of this list.#ifdef __GTHREADS struct _Thread_record { // Points to next free thread id record. NULL if last record in list. _Thread_record* volatile _M_next; // Thread id ranging from 1 to _S_max_threads. size_t _M_id; }; static _Thread_record* volatile _S_thread_freelist_first; static __gthread_mutex_t _S_thread_freelist_mutex; static __gthread_key_t _S_thread_key; static void _S_destroy_thread_key(void* __freelist_pos);#endif static size_t _S_get_thread_id(); union _Block_record { // Points to the block_record of the next free block. _Block_record* volatile _M_next;#ifdef __GTHREADS // The thread id of the thread which has requested this block. size_t _M_thread_id;#endif }; struct _Bin_record { // An "array" of pointers to the first free block for each // thread id. Memory to this "array" is allocated in _S_initialize() // for _S_max_threads + global pool 0. _Block_record** volatile _M_first;#ifdef __GTHREADS // An "array" of counters used to keep track of the amount of // blocks that are on the freelist/used for each thread id. // Memory to these "arrays" is allocated in _S_initialize() for // _S_max_threads + global pool 0. size_t* volatile _M_free; size_t* volatile _M_used; // Each bin has its own mutex which is used to ensure data // integrity while changing "ownership" on a block. The mutex // is initialized in _S_initialize(). __gthread_mutex_t* _M_mutex;#endif }; // An "array" of bin_records each of which represents a specific // power of 2 size. Memory to this "array" is allocated in // _S_initialize(). static _Bin_record* volatile _S_bin; // Actual value calculated in _S_initialize(). static size_t _S_bin_size; }; template<typename _Tp> typename __mt_alloc<_Tp>::pointer __mt_alloc<_Tp>:: allocate(size_type __n, const void*) { // Although the test in __gthread_once() would suffice, we wrap // test of the once condition in our own unlocked check. This // saves one function call to pthread_once() (which itself only // tests for the once value unlocked anyway and immediately // returns if set) if (!_S_init) {#ifdef __GTHREADS if (__gthread_active_p()) __gthread_once(&_S_once, _S_initialize);#endif if (!_S_init) _S_initialize(); } // Requests larger than _M_max_bytes are handled by new/delete // directly. const size_t __bytes = __n * sizeof(_Tp); if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new) { void* __ret = ::operator new(__bytes); return static_cast<_Tp*>(__ret); } // Round up to power of 2 and figure out which bin to use. const size_t __which = _S_binmap[__bytes]; const size_t __thread_id = _S_get_thread_id(); // Find out if we have blocks on our freelist. If so, go ahead // and use them directly without having to lock anything. const _Bin_record& __bin = _S_bin[__which]; _Block_record* __block = NULL; if (__bin._M_first[__thread_id] == NULL) { // NB: For alignment reasons, we can't use the first _M_align // bytes, even when sizeof(_Block_record) < _M_align. const size_t __bin_size = ((_S_options._M_min_bin << __which) + _S_options._M_align); size_t __block_count = _S_options._M_chunk_size / __bin_size; // Are we using threads? // - Yes, check if there are free blocks on the global // list. If so, grab up to __block_count blocks in one // lock and change ownership. If the global list is // empty, we allocate a new chunk and add those blocks // directly to our own freelist (with us as owner). // - No, all operations are made directly to global pool 0 // no need to lock or change ownership but check for free // blocks on global list (and if not add new ones) and // get the first one.#ifdef __GTHREADS if (__gthread_active_p()) { __gthread_mutex_lock(__bin._M_mutex); if (__bin._M_first[0] == NULL) { // No need to hold the lock when we are adding a // whole chunk to our own list. __gthread_mutex_unlock(__bin._M_mutex); void* __v = ::operator new(_S_options._M_chunk_size); __bin._M_first[__thread_id] = static_cast<_Block_record*>(__v); __bin._M_free[__thread_id] = __block_count; --__block_count; __block = __bin._M_first[__thread_id]; while (__block_count-- > 0) { char* __c = reinterpret_cast<char*>(__block) + __bin_size; __block->_M_next = reinterpret_cast<_Block_record*>(__c); __block = __block->_M_next; } __block->_M_next = NULL; } else { // Is the number of required blocks greater than or // equal to the number that can be provided by the // global free list?
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -