📄 complex
字号:
inline complex<_Tp>operator/(const complex<_Tp>& __x, const _Tp& __y){ complex<_Tp> __r = __x; __r /= __y; return __r;}template<typename _Tp> inline complex<_Tp>operator/(const _Tp& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __x; __r /= __y; return __r;}//@}/// Return @a x.template<typename _Tp> inline complex<_Tp>operator+(const complex<_Tp>& __x){ return __x; }/// Return complex negation of @a x.template<typename _Tp> inline complex<_Tp>operator-(const complex<_Tp>& __x){ return complex<_Tp>(-__x.real(), -__x.imag()); }//@{/// Return true if @a x is equal to @a y.template<typename _Tp> inline booloperator==(const complex<_Tp>& __x, const complex<_Tp>& __y){ return __x.real() == __y.real() && __x.imag() == __y.imag(); }template<typename _Tp> inline booloperator==(const complex<_Tp>& __x, const _Tp& __y){ return __x.real() == __y && __x.imag() == _Tp(); }template<typename _Tp> inline booloperator==(const _Tp& __x, const complex<_Tp>& __y){ return __x == __y.real() && _Tp() == __y.imag(); }//@}//@{/// Return false if @a x is equal to @a y.template<typename _Tp> inline booloperator!=(const complex<_Tp>& __x, const complex<_Tp>& __y){ return __x.real() != __y.real() || __x.imag() != __y.imag(); }template<typename _Tp> inline booloperator!=(const complex<_Tp>& __x, const _Tp& __y){ return __x.real() != __y || __x.imag() != _Tp(); }template<typename _Tp> inline booloperator!=(const _Tp& __x, const complex<_Tp>& __y){ return __x != __y.real() || _Tp() != __y.imag(); }//@}/// Extraction operator for complex values.template<typename _Tp, typename _CharT, class _Traits> basic_istream<_CharT, _Traits>&operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x){ _Tp __re_x, __im_x; _CharT __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = __re_x; else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = __re_x; } return __is;}/// Insertion operator for complex values.template<typename _Tp, typename _CharT, class _Traits> basic_ostream<_CharT, _Traits>&operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x){ basic_ostringstream<_CharT, _Traits> __s; __s.flags(__os.flags()); __s.imbue(__os.getloc()); __s.precision(__os.precision()); __s << '(' << __x.real() << ',' << __x.imag() << ')'; return __os << __s.str();}// Valuestemplate<typename _Tp> inline _Tp&real(complex<_Tp>& __z){ return __z.real(); }template<typename _Tp> inline const _Tp&real(const complex<_Tp>& __z){ return __z.real(); }template<typename _Tp> inline _Tp&imag(complex<_Tp>& __z){ return __z.imag(); }template<typename _Tp> inline const _Tp&imag(const complex<_Tp>& __z){ return __z.imag(); }template<typename _Tp> inline _Tpabs(const complex<_Tp>& __z){ _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = std::max(abs(__x), abs(__y)); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y);}template<typename _Tp> inline _Tparg(const complex<_Tp>& __z){ return atan2(__z.imag(), __z.real()); }// 26.2.7/5: norm(__z) returns the squared magintude of __z.// As defined, norm() is -not- a norm is the common mathematical// sens used in numerics. The helper class _Norm_helper<> tries to// distinguish between builtin floating point and the rest, so as// to deliver an answer as close as possible to the real value.template<bool>struct _Norm_helper{ template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return __x * __x + __y * __y; }};template<>struct _Norm_helper<true>{ template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { _Tp __res = std::abs(__z); return __res * __res; }};template<typename _Tp> inline _Tpnorm(const complex<_Tp>& __z){ return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);}template<typename _Tp> inline complex<_Tp>polar(const _Tp& __rho, const _Tp& __theta){ return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }template<typename _Tp> inline complex<_Tp>conj(const complex<_Tp>& __z){ return complex<_Tp>(__z.real(), -__z.imag()); }// Transcendentalstemplate<typename _Tp> inline complex<_Tp>cos(const complex<_Tp>& __z){ const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));}template<typename _Tp> inline complex<_Tp>cosh(const complex<_Tp>& __z){ const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));}template<typename _Tp> inline complex<_Tp>exp(const complex<_Tp>& __z){ return std::polar(exp(__z.real()), __z.imag()); }template<typename _Tp> inline complex<_Tp>log(const complex<_Tp>& __z){ return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }template<typename _Tp> inline complex<_Tp>log10(const complex<_Tp>& __z){ return std::log(__z) / log(_Tp(10.0)); }template<typename _Tp> inline complex<_Tp>sin(const complex<_Tp>& __z){ const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); }template<typename _Tp> inline complex<_Tp>sinh(const complex<_Tp>& __z){ const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));}template<typename _Tp> complex<_Tp>sqrt(const complex<_Tp>& __z){ _Tp __x = __z.real(); _Tp __y = __z.imag(); if (__x == _Tp()) { _Tp __t = sqrt(abs(__y) / 2); return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); } else { _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x))); _Tp __u = __t / 2; return __x > _Tp() ? complex<_Tp>(__u, __y / __t) : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); }}template<typename _Tp> inline complex<_Tp>tan(const complex<_Tp>& __z){ return std::sin(__z) / std::cos(__z);}template<typename _Tp> inline complex<_Tp>tanh(const complex<_Tp>& __z){ return std::sinh(__z) / std::cosh(__z);}template<typename _Tp> inline complex<_Tp>pow(const complex<_Tp>& __z, int __n){ return std::__pow_helper(__z, __n);}template<typename _Tp> complex<_Tp>pow(const complex<_Tp>& __x, const _Tp& __y){ if (__x.imag() == _Tp() && __x.real() > _Tp()) return pow(__x.real(), __y); complex<_Tp> __t = std::log(__x); return std::polar(exp(__y * __t.real()), __y * __t.imag());}template<typename _Tp> inline complex<_Tp>pow(const complex<_Tp>& __x, const complex<_Tp>& __y){ return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));}template<typename _Tp> inline complex<_Tp>pow(const _Tp& __x, const complex<_Tp>& __y){ return __x > _Tp() ? std::polar(pow(__x, __y.real()), __y.imag() * log(__x)) : std::pow(complex<_Tp>(__x, _Tp()), __y);}// 26.2.3 complex specializations// complex<float> specializationtemplate<> class complex<float>{ public: typedef float value_type; complex(float = 0.0f, float = 0.0f);#ifdef _GLIBCXX_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { }#endif explicit complex(const complex<double>&); explicit complex(const complex<long double>&); float& real(); const float& real() const; float& imag(); const float& imag() const; complex<float>& operator=(float); complex<float>& operator+=(float); complex<float>& operator-=(float); complex<float>& operator*=(float); complex<float>& operator/=(float); // Let's the compiler synthetize the copy and assignment // operator. It always does a pretty good job. // complex& operator= (const complex&); template<typename _Tp> complex<float>&operator=(const complex<_Tp>&); template<typename _Tp> complex<float>& operator+=(const complex<_Tp>&); template<class _Tp> complex<float>& operator-=(const complex<_Tp>&); template<class _Tp> complex<float>& operator*=(const complex<_Tp>&); template<class _Tp> complex<float>&operator/=(const complex<_Tp>&); private: typedef __complex__ float _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex<double>; friend class complex<long double>;}; inline float&complex<float>::real(){ return __real__ _M_value; }inline const float&complex<float>::real() const{ return __real__ _M_value; } inline float&complex<float>::imag(){ return __imag__ _M_value; }inline const float&complex<float>::imag() const{ return __imag__ _M_value; } inlinecomplex<float>::complex(float r, float i){ __real__ _M_value = r; __imag__ _M_value = i;} inline complex<float>&complex<float>::operator=(float __f){ __real__ _M_value = __f; __imag__ _M_value = 0.0f; return *this;} inline complex<float>&complex<float>::operator+=(float __f){ __real__ _M_value += __f; return *this;} inline complex<float>&complex<float>::operator-=(float __f){ __real__ _M_value -= __f; return *this;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -