⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex

📁 symbian上STL模板库的实现
💻
📖 第 1 页 / 共 3 页
字号:
    inline complex<_Tp>operator/(const complex<_Tp>& __x, const _Tp& __y){    complex<_Tp> __r = __x;    __r /= __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator/(const _Tp& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __x;    __r /= __y;    return __r;}//@}///  Return @a x.template<typename _Tp>    inline complex<_Tp>operator+(const complex<_Tp>& __x){ return __x; }///  Return complex negation of @a x.template<typename _Tp>    inline complex<_Tp>operator-(const complex<_Tp>& __x){  return complex<_Tp>(-__x.real(), -__x.imag()); }//@{///  Return true if @a x is equal to @a y.template<typename _Tp>    inline booloperator==(const complex<_Tp>& __x, const complex<_Tp>& __y){ return __x.real() == __y.real() && __x.imag() == __y.imag(); }template<typename _Tp>    inline booloperator==(const complex<_Tp>& __x, const _Tp& __y){ return __x.real() == __y && __x.imag() == _Tp(); }template<typename _Tp>    inline booloperator==(const _Tp& __x, const complex<_Tp>& __y){ return __x == __y.real() && _Tp() == __y.imag(); }//@}//@{///  Return false if @a x is equal to @a y.template<typename _Tp>    inline booloperator!=(const complex<_Tp>& __x, const complex<_Tp>& __y){ return __x.real() != __y.real() || __x.imag() != __y.imag(); }template<typename _Tp>    inline booloperator!=(const complex<_Tp>& __x, const _Tp& __y){ return __x.real() != __y || __x.imag() != _Tp(); }template<typename _Tp>    inline booloperator!=(const _Tp& __x, const complex<_Tp>& __y){ return __x != __y.real() || _Tp() != __y.imag(); }//@}///  Extraction operator for complex values.template<typename _Tp, typename _CharT, class _Traits>    basic_istream<_CharT, _Traits>&operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x){    _Tp __re_x, __im_x;    _CharT __ch;    __is >> __ch;    if (__ch == '(')     {        __is >> __re_x >> __ch;        if (__ch == ',')         {            __is >> __im_x >> __ch;            if (__ch == ')')                 __x = complex<_Tp>(__re_x, __im_x);            else                __is.setstate(ios_base::failbit);        }        else if (__ch == ')')             __x = __re_x;        else            __is.setstate(ios_base::failbit);    }    else     {        __is.putback(__ch);        __is >> __re_x;        __x = __re_x;    }    return __is;}///  Insertion operator for complex values.template<typename _Tp, typename _CharT, class _Traits>    basic_ostream<_CharT, _Traits>&operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x){    basic_ostringstream<_CharT, _Traits> __s;    __s.flags(__os.flags());    __s.imbue(__os.getloc());    __s.precision(__os.precision());    __s << '(' << __x.real() << ',' << __x.imag() << ')';    return __os << __s.str();}// Valuestemplate<typename _Tp>    inline _Tp&real(complex<_Tp>& __z){ return __z.real(); }template<typename _Tp>    inline const _Tp&real(const complex<_Tp>& __z){ return __z.real(); }template<typename _Tp>    inline _Tp&imag(complex<_Tp>& __z){ return __z.imag(); }template<typename _Tp>    inline const _Tp&imag(const complex<_Tp>& __z){ return __z.imag(); }template<typename _Tp>    inline _Tpabs(const complex<_Tp>& __z){    _Tp __x = __z.real();    _Tp __y = __z.imag();    const _Tp __s = std::max(abs(__x), abs(__y));    if (__s == _Tp())  // well ...        return __s;    __x /= __s;     __y /= __s;    return __s * sqrt(__x * __x + __y * __y);}template<typename _Tp>    inline _Tparg(const complex<_Tp>& __z){ return atan2(__z.imag(), __z.real()); }// 26.2.7/5: norm(__z) returns the squared magintude of __z.//     As defined, norm() is -not- a norm is the common mathematical//     sens used in numerics.  The helper class _Norm_helper<> tries to//     distinguish between builtin floating point and the rest, so as//     to deliver an answer as close as possible to the real value.template<bool>struct _Norm_helper{    template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {            const _Tp __x = __z.real();            const _Tp __y = __z.imag();            return __x * __x + __y * __y;        }};template<>struct _Norm_helper<true>{    template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {            _Tp __res = std::abs(__z);            return __res * __res;        }};template<typename _Tp>    inline _Tpnorm(const complex<_Tp>& __z){    return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);}template<typename _Tp>    inline complex<_Tp>polar(const _Tp& __rho, const _Tp& __theta){ return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }template<typename _Tp>    inline complex<_Tp>conj(const complex<_Tp>& __z){ return complex<_Tp>(__z.real(), -__z.imag()); }// Transcendentalstemplate<typename _Tp>    inline complex<_Tp>cos(const complex<_Tp>& __z){    const _Tp __x = __z.real();    const _Tp __y = __z.imag();    return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));}template<typename _Tp>    inline complex<_Tp>cosh(const complex<_Tp>& __z){    const _Tp __x = __z.real();    const _Tp __y = __z.imag();    return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));}template<typename _Tp>    inline complex<_Tp>exp(const complex<_Tp>& __z){ return std::polar(exp(__z.real()), __z.imag()); }template<typename _Tp>    inline complex<_Tp>log(const complex<_Tp>& __z){ return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }template<typename _Tp>    inline complex<_Tp>log10(const complex<_Tp>& __z){ return std::log(__z) / log(_Tp(10.0)); }template<typename _Tp>    inline complex<_Tp>sin(const complex<_Tp>& __z){    const _Tp __x = __z.real();    const _Tp __y = __z.imag();    return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); }template<typename _Tp>    inline complex<_Tp>sinh(const complex<_Tp>& __z){    const _Tp __x = __z.real();    const _Tp  __y = __z.imag();    return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));}template<typename _Tp>    complex<_Tp>sqrt(const complex<_Tp>& __z){    _Tp __x = __z.real();    _Tp __y = __z.imag();    if (__x == _Tp())    {        _Tp __t = sqrt(abs(__y) / 2);        return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);    }    else    {        _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));        _Tp __u = __t / 2;        return __x > _Tp()            ? complex<_Tp>(__u, __y / __t)            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);    }}template<typename _Tp>    inline complex<_Tp>tan(const complex<_Tp>& __z){    return std::sin(__z) / std::cos(__z);}template<typename _Tp>    inline complex<_Tp>tanh(const complex<_Tp>& __z){    return std::sinh(__z) / std::cosh(__z);}template<typename _Tp>    inline complex<_Tp>pow(const complex<_Tp>& __z, int __n){    return std::__pow_helper(__z, __n);}template<typename _Tp>    complex<_Tp>pow(const complex<_Tp>& __x, const _Tp& __y){    if (__x.imag() == _Tp() && __x.real() > _Tp())        return pow(__x.real(), __y);    complex<_Tp> __t = std::log(__x);    return std::polar(exp(__y * __t.real()), __y * __t.imag());}template<typename _Tp>    inline complex<_Tp>pow(const complex<_Tp>& __x, const complex<_Tp>& __y){    return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));}template<typename _Tp>    inline complex<_Tp>pow(const _Tp& __x, const complex<_Tp>& __y){    return __x > _Tp() ? std::polar(pow(__x, __y.real()),            __y.imag() * log(__x))        : std::pow(complex<_Tp>(__x, _Tp()), __y);}// 26.2.3  complex specializations// complex<float> specializationtemplate<> class complex<float>{    public:        typedef float value_type;        complex(float = 0.0f, float = 0.0f);#ifdef _GLIBCXX_BUGGY_COMPLEX        complex(const complex& __z) : _M_value(__z._M_value) { }#endif        explicit complex(const complex<double>&);        explicit complex(const complex<long double>&);        float& real();        const float& real() const;        float& imag();        const float& imag() const;        complex<float>& operator=(float);        complex<float>& operator+=(float);        complex<float>& operator-=(float);        complex<float>& operator*=(float);        complex<float>& operator/=(float);        // Let's the compiler synthetize the copy and assignment        // operator.  It always does a pretty good job.        // complex& operator= (const complex&);        template<typename _Tp>            complex<float>&operator=(const complex<_Tp>&);        template<typename _Tp>            complex<float>& operator+=(const complex<_Tp>&);        template<class _Tp>            complex<float>& operator-=(const complex<_Tp>&);        template<class _Tp>            complex<float>& operator*=(const complex<_Tp>&);        template<class _Tp>            complex<float>&operator/=(const complex<_Tp>&);    private:        typedef __complex__ float _ComplexT;        _ComplexT _M_value;        complex(_ComplexT __z) : _M_value(__z) { }        friend class complex<double>;        friend class complex<long double>;};    inline float&complex<float>::real(){ return __real__ _M_value; }inline const float&complex<float>::real() const{ return __real__ _M_value; }    inline float&complex<float>::imag(){ return __imag__ _M_value; }inline const float&complex<float>::imag() const{ return __imag__ _M_value; }    inlinecomplex<float>::complex(float r, float i){    __real__ _M_value = r;    __imag__ _M_value = i;}    inline complex<float>&complex<float>::operator=(float __f){    __real__ _M_value = __f;    __imag__ _M_value = 0.0f;    return *this;}    inline complex<float>&complex<float>::operator+=(float __f){    __real__ _M_value += __f;    return *this;}    inline complex<float>&complex<float>::operator-=(float __f){    __real__ _M_value -= __f;    return *this;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -