📄 complex
字号:
// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2 Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** @file complex * This is a Standard C++ Library header. You should @c #include this header * in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _GLIBCXX_COMPLEX#define _GLIBCXX_COMPLEX 1//#pragma GCC system_header#include <bits/c++config.h>#include <bits/cpp_type_traits.h>#include <cmath>#include <sstream>namespace std{ // Forward declarations template<typename _Tp> class complex; template<> class complex<float>; template<> class complex<double>; template<> class complex<long double>; /// Return magnitude of @a z. template<typename _Tp> _Tp abs(const complex<_Tp>&); /// Return phase angle of @a z. template<typename _Tp> _Tp arg(const complex<_Tp>&); /// Return @a z magnitude squared. template<typename _Tp> _Tp norm(const complex<_Tp>&); /// Return complex conjugate of @a z. template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&); /// Return complex with magnitude @a rho and angle @a theta. template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0); // Transcendentals: /// Return complex cosine of @a z. template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&); /// Return complex hyperbolic cosine of @a z. template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&); /// Return complex base e exponential of @a z. template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&); /// Return complex natural logarithm of @a z. template<typename _Tp> complex<_Tp> log(const complex<_Tp>&); /// Return complex base 10 logarithm of @a z. template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&); /// Return complex cosine of @a z. template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int); /// Return @a x to the @a y'th power. template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&); /// Return @a x to the @a y'th power. template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&); /// Return @a x to the @a y'th power. template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&); /// Return complex sine of @a z. template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&); /// Return complex hyperbolic sine of @a z. template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&); /// Return complex square root of @a z. template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&); /// Return complex tangent of @a z. template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&); /// Return complex hyperbolic tangent of @a z. template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&); //@} // 26.2.2 Primary template class complex /** * Template to represent complex numbers. * * Specializations for float, double, and long double are part of the * library. Results with any other type are not guaranteed. * * @param Tp Type of real and imaginary values. */ template<typename _Tp> class complex{ public: /// Value typedef. typedef _Tp value_type; /// Default constructor. First parameter is x, second parameter is y. /// Unspecified parameters default to 0. complex(const _Tp& = _Tp(), const _Tp & = _Tp()); // Lets the compiler synthesize the copy constructor // complex (const complex<_Tp>&); /// Copy constructor. template<typename _Up> complex(const complex<_Up>&); /// Return real part of complex number. _Tp& real(); /// Return real part of complex number. const _Tp& real() const; /// Return imaginary part of complex number. _Tp& imag(); /// Return imaginary part of complex number. const _Tp& imag() const; /// Assign this complex number to scalar @a t. complex<_Tp>& operator=(const _Tp&); /// Add @a t to this complex number. complex<_Tp>& operator+=(const _Tp&); /// Subtract @a t from this complex number. complex<_Tp>& operator-=(const _Tp&); /// Multiply this complex number by @a t. complex<_Tp>& operator*=(const _Tp&); /// Divide this complex number by @a t. complex<_Tp>& operator/=(const _Tp&); // Lets the compiler synthesize the // copy and assignment operator // complex<_Tp>& operator= (const complex<_Tp>&); /// Assign this complex number to complex @a z. template<typename _Up> complex<_Tp>& operator=(const complex<_Up>&); /// Add @a z to this complex number. template<typename _Up> complex<_Tp>& operator+=(const complex<_Up>&); /// Subtract @a z from this complex number. template<typename _Up> complex<_Tp>& operator-=(const complex<_Up>&); /// Multiply this complex number by @a z. template<typename _Up> complex<_Tp>& operator*=(const complex<_Up>&); /// Divide this complex number by @a z. template<typename _Up> complex<_Tp>& operator/=(const complex<_Up>&); private: _Tp _M_real; _Tp _M_imag;};template<typename _Tp>inline _Tp&complex<_Tp>::real() { return _M_real; }template<typename _Tp>inline const _Tp&complex<_Tp>::real() const { return _M_real; }template<typename _Tp>inline _Tp&complex<_Tp>::imag() { return _M_imag; }template<typename _Tp>inline const _Tp&complex<_Tp>::imag() const { return _M_imag; }template<typename _Tp> inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) { } template<typename _Tp> template<typename _Up> inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } template<typename _Tp> complex<_Tp>&complex<_Tp>::operator=(const _Tp& __t){ _M_real = __t; _M_imag = _Tp(); return *this;} // 26.2.5/1template<typename _Tp> inline complex<_Tp>&complex<_Tp>::operator+=(const _Tp& __t){ _M_real += __t; return *this;}// 26.2.5/3template<typename _Tp> inline complex<_Tp>&complex<_Tp>::operator-=(const _Tp& __t){ _M_real -= __t; return *this;}// 26.2.5/5template<typename _Tp> complex<_Tp>&complex<_Tp>::operator*=(const _Tp& __t){ _M_real *= __t; _M_imag *= __t; return *this;}// 26.2.5/7template<typename _Tp> complex<_Tp>&complex<_Tp>::operator/=(const _Tp& __t){ _M_real /= __t; _M_imag /= __t; return *this;}template<typename _Tp>template<typename _Up> complex<_Tp>&complex<_Tp>::operator=(const complex<_Up>& __z){ _M_real = __z.real(); _M_imag = __z.imag(); return *this;}// 26.2.5/9template<typename _Tp>template<typename _Up> complex<_Tp>&complex<_Tp>::operator+=(const complex<_Up>& __z){ _M_real += __z.real(); _M_imag += __z.imag(); return *this;}// 26.2.5/11template<typename _Tp>template<typename _Up> complex<_Tp>&complex<_Tp>::operator-=(const complex<_Up>& __z){ _M_real -= __z.real(); _M_imag -= __z.imag(); return *this;}// 26.2.5/13// XXX: This is a grammar school implementation.template<typename _Tp>template<typename _Up> complex<_Tp>&complex<_Tp>::operator*=(const complex<_Up>& __z){ const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this;}// 26.2.5/15// XXX: This is a grammar school implementation.template<typename _Tp>template<typename _Up> complex<_Tp>&complex<_Tp>::operator/=(const complex<_Up>& __z){ const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); const _Tp __n = std::norm(__z); _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; _M_real = __r / __n; return *this;}// Operators://@{/// Return new complex value @a x plus @a y.template<typename _Tp> inline complex<_Tp>operator+(const complex<_Tp>& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __x; __r += __y; return __r;}template<typename _Tp> inline complex<_Tp>operator+(const complex<_Tp>& __x, const _Tp& __y){ complex<_Tp> __r = __x; __r.real() += __y; return __r;}template<typename _Tp> inline complex<_Tp>operator+(const _Tp& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __y; __r.real() += __x; return __r;}//@}//@{/// Return new complex value @a x minus @a y.template<typename _Tp> inline complex<_Tp>operator-(const complex<_Tp>& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __x; __r -= __y; return __r;}template<typename _Tp> inline complex<_Tp>operator-(const complex<_Tp>& __x, const _Tp& __y){ complex<_Tp> __r = __x; __r.real() -= __y; return __r;}template<typename _Tp> inline complex<_Tp>operator-(const _Tp& __x, const complex<_Tp>& __y){ complex<_Tp> __r(__x, -__y.imag()); __r.real() -= __y.real(); return __r;}//@}//@{/// Return new complex value @a x times @a y.template<typename _Tp> inline complex<_Tp>operator*(const complex<_Tp>& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __x; __r *= __y; return __r;}template<typename _Tp> inline complex<_Tp>operator*(const complex<_Tp>& __x, const _Tp& __y){ complex<_Tp> __r = __x; __r *= __y; return __r;}template<typename _Tp> inline complex<_Tp>operator*(const _Tp& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __y; __r *= __x; return __r;}//@}//@{/// Return new complex value @a x divided by @a y.template<typename _Tp> inline complex<_Tp>operator/(const complex<_Tp>& __x, const complex<_Tp>& __y){ complex<_Tp> __r = __x; __r /= __y; return __r;}template<typename _Tp>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -