⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex

📁 symbian上STL模板库的实现
💻
📖 第 1 页 / 共 3 页
字号:
// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2  Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** @file complex *  This is a Standard C++ Library header.  You should @c #include this header *  in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _GLIBCXX_COMPLEX#define _GLIBCXX_COMPLEX 1//#pragma GCC system_header#include <bits/c++config.h>#include <bits/cpp_type_traits.h>#include <cmath>#include <sstream>namespace std{    // Forward declarations    template<typename _Tp> class complex;    template<> class complex<float>;    template<> class complex<double>;    template<> class complex<long double>;    ///  Return magnitude of @a z.    template<typename _Tp> _Tp abs(const complex<_Tp>&);    ///  Return phase angle of @a z.    template<typename _Tp> _Tp arg(const complex<_Tp>&);    ///  Return @a z magnitude squared.    template<typename _Tp> _Tp norm(const complex<_Tp>&);    ///  Return complex conjugate of @a z.    template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);    ///  Return complex with magnitude @a rho and angle @a theta.    template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);    // Transcendentals:    /// Return complex cosine of @a z.    template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);    /// Return complex hyperbolic cosine of @a z.    template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);    /// Return complex base e exponential of @a z.    template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);    /// Return complex natural logarithm of @a z.    template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);    /// Return complex base 10 logarithm of @a z.    template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);    /// Return complex cosine of @a z.    template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);    /// Return @a x to the @a y'th power.    template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);    /// Return @a x to the @a y'th power.    template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,             const complex<_Tp>&);    /// Return @a x to the @a y'th power.    template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);    /// Return complex sine of @a z.    template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);    /// Return complex hyperbolic sine of @a z.    template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);    /// Return complex square root of @a z.    template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);    /// Return complex tangent of @a z.    template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);    /// Return complex hyperbolic tangent of @a z.    template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);    //@}    // 26.2.2  Primary template class complex    /**     *  Template to represent complex numbers.     *     *  Specializations for float, double, and long double are part of the     *  library.  Results with any other type are not guaranteed.     *     *  @param  Tp  Type of real and imaginary values.     */    template<typename _Tp>    class complex{    public:        /// Value typedef.        typedef _Tp value_type;        ///  Default constructor.  First parameter is x, second parameter is y.        ///  Unspecified parameters default to 0.        complex(const _Tp& = _Tp(), const _Tp & = _Tp());        // Lets the compiler synthesize the copy constructor           // complex (const complex<_Tp>&);        ///  Copy constructor.        template<typename _Up>            complex(const complex<_Up>&);        ///  Return real part of complex number.        _Tp& real();         ///  Return real part of complex number.        const _Tp& real() const;        ///  Return imaginary part of complex number.        _Tp& imag();        ///  Return imaginary part of complex number.        const _Tp& imag() const;        /// Assign this complex number to scalar @a t.        complex<_Tp>& operator=(const _Tp&);        /// Add @a t to this complex number.        complex<_Tp>& operator+=(const _Tp&);        /// Subtract @a t from this complex number.        complex<_Tp>& operator-=(const _Tp&);        /// Multiply this complex number by @a t.        complex<_Tp>& operator*=(const _Tp&);        /// Divide this complex number by @a t.        complex<_Tp>& operator/=(const _Tp&);        // Lets the compiler synthesize the        // copy and assignment operator        // complex<_Tp>& operator= (const complex<_Tp>&);        /// Assign this complex number to complex @a z.        template<typename _Up>            complex<_Tp>& operator=(const complex<_Up>&);        /// Add @a z to this complex number.        template<typename _Up>            complex<_Tp>& operator+=(const complex<_Up>&);        /// Subtract @a z from this complex number.        template<typename _Up>            complex<_Tp>& operator-=(const complex<_Up>&);        /// Multiply this complex number by @a z.        template<typename _Up>            complex<_Tp>& operator*=(const complex<_Up>&);        /// Divide this complex number by @a z.        template<typename _Up>            complex<_Tp>& operator/=(const complex<_Up>&);    private:        _Tp _M_real;        _Tp _M_imag;};template<typename _Tp>inline _Tp&complex<_Tp>::real() { return _M_real; }template<typename _Tp>inline const _Tp&complex<_Tp>::real() const { return _M_real; }template<typename _Tp>inline _Tp&complex<_Tp>::imag() { return _M_imag; }template<typename _Tp>inline const _Tp&complex<_Tp>::imag() const { return _M_imag; }template<typename _Tp>    inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)    : _M_real(__r), _M_imag(__i) { }    template<typename _Tp>    template<typename _Up>    inline complex<_Tp>::complex(const complex<_Up>& __z)    : _M_real(__z.real()), _M_imag(__z.imag()) { }    template<typename _Tp>    complex<_Tp>&complex<_Tp>::operator=(const _Tp& __t){    _M_real = __t;    _M_imag = _Tp();    return *this;} // 26.2.5/1template<typename _Tp>    inline complex<_Tp>&complex<_Tp>::operator+=(const _Tp& __t){    _M_real += __t;    return *this;}// 26.2.5/3template<typename _Tp>    inline complex<_Tp>&complex<_Tp>::operator-=(const _Tp& __t){    _M_real -= __t;    return *this;}// 26.2.5/5template<typename _Tp>    complex<_Tp>&complex<_Tp>::operator*=(const _Tp& __t){    _M_real *= __t;    _M_imag *= __t;    return *this;}// 26.2.5/7template<typename _Tp>    complex<_Tp>&complex<_Tp>::operator/=(const _Tp& __t){    _M_real /= __t;    _M_imag /= __t;    return *this;}template<typename _Tp>template<typename _Up>    complex<_Tp>&complex<_Tp>::operator=(const complex<_Up>& __z){    _M_real = __z.real();    _M_imag = __z.imag();    return *this;}// 26.2.5/9template<typename _Tp>template<typename _Up>    complex<_Tp>&complex<_Tp>::operator+=(const complex<_Up>& __z){    _M_real += __z.real();    _M_imag += __z.imag();    return *this;}// 26.2.5/11template<typename _Tp>template<typename _Up>    complex<_Tp>&complex<_Tp>::operator-=(const complex<_Up>& __z){    _M_real -= __z.real();    _M_imag -= __z.imag();    return *this;}// 26.2.5/13// XXX: This is a grammar school implementation.template<typename _Tp>template<typename _Up>    complex<_Tp>&complex<_Tp>::operator*=(const complex<_Up>& __z){    const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();    _M_imag = _M_real * __z.imag() + _M_imag * __z.real();    _M_real = __r;    return *this;}// 26.2.5/15// XXX: This is a grammar school implementation.template<typename _Tp>template<typename _Up>    complex<_Tp>&complex<_Tp>::operator/=(const complex<_Up>& __z){    const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();    const _Tp __n = std::norm(__z);    _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;    _M_real = __r / __n;    return *this;}// Operators://@{///  Return new complex value @a x plus @a y.template<typename _Tp>    inline complex<_Tp>operator+(const complex<_Tp>& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __x;    __r += __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator+(const complex<_Tp>& __x, const _Tp& __y){    complex<_Tp> __r = __x;    __r.real() += __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator+(const _Tp& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __y;    __r.real() += __x;    return __r;}//@}//@{///  Return new complex value @a x minus @a y.template<typename _Tp>    inline complex<_Tp>operator-(const complex<_Tp>& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __x;    __r -= __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator-(const complex<_Tp>& __x, const _Tp& __y){    complex<_Tp> __r = __x;    __r.real() -= __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator-(const _Tp& __x, const complex<_Tp>& __y){    complex<_Tp> __r(__x, -__y.imag());    __r.real() -= __y.real();    return __r;}//@}//@{///  Return new complex value @a x times @a y.template<typename _Tp>    inline complex<_Tp>operator*(const complex<_Tp>& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __x;    __r *= __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator*(const complex<_Tp>& __x, const _Tp& __y){    complex<_Tp> __r = __x;    __r *= __y;    return __r;}template<typename _Tp>    inline complex<_Tp>operator*(const _Tp& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __y;    __r *= __x;    return __r;}//@}//@{///  Return new complex value @a x divided by @a y.template<typename _Tp>    inline complex<_Tp>operator/(const complex<_Tp>& __x, const complex<_Tp>& __y){    complex<_Tp> __r = __x;    __r /= __y;    return __r;}template<typename _Tp>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -