📄 blocksort.c
字号:
staticALWAYS_INLINEuint8_t mmed3(uint8_t a, uint8_t b, uint8_t c){ uint8_t t; if (a > b) { t = a; a = b; b = t; }; /* here b >= a */ if (b > c) { b = c; if (a > b) b = a; } return b;}#define mpush(lz,hz,dz) \{ \ stackLo[sp] = lz; \ stackHi[sp] = hz; \ stackD [sp] = dz; \ sp++; \}#define mpop(lz,hz,dz) \{ \ sp--; \ lz = stackLo[sp]; \ hz = stackHi[sp]; \ dz = stackD [sp]; \}#define mnextsize(az) (nextHi[az] - nextLo[az])#define mnextswap(az,bz) \{ \ int32_t tz; \ tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; \}#define MAIN_QSORT_SMALL_THRESH 20#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)#define MAIN_QSORT_STACK_SIZE 100staticvoid mainQSort3(uint32_t* ptr, uint8_t* block, uint16_t* quadrant, int32_t nblock, int32_t loSt, int32_t hiSt, int32_t dSt, int32_t* budget){ int32_t unLo, unHi, ltLo, gtHi, n, m, med; int32_t sp, lo, hi, d; int32_t stackLo[MAIN_QSORT_STACK_SIZE]; int32_t stackHi[MAIN_QSORT_STACK_SIZE]; int32_t stackD [MAIN_QSORT_STACK_SIZE]; int32_t nextLo[3]; int32_t nextHi[3]; int32_t nextD [3]; sp = 0; mpush(loSt, hiSt, dSt); while (sp > 0) { AssertH(sp < MAIN_QSORT_STACK_SIZE - 2, 1001); mpop(lo, hi, d); if (hi - lo < MAIN_QSORT_SMALL_THRESH || d > MAIN_QSORT_DEPTH_THRESH ) { mainSimpleSort(ptr, block, quadrant, nblock, lo, hi, d, budget); if (*budget < 0) return; continue; } med = (int32_t) mmed3(block[ptr[lo ] + d], block[ptr[hi ] + d], block[ptr[(lo+hi) >> 1] + d]); unLo = ltLo = lo; unHi = gtHi = hi; while (1) { while (1) { if (unLo > unHi) break; n = ((int32_t)block[ptr[unLo]+d]) - med; if (n == 0) { mswap(ptr[unLo], ptr[ltLo]); ltLo++; unLo++; continue; }; if (n > 0) break; unLo++; } while (1) { if (unLo > unHi) break; n = ((int32_t)block[ptr[unHi]+d]) - med; if (n == 0) { mswap(ptr[unHi], ptr[gtHi]); gtHi--; unHi--; continue; }; if (n < 0) break; unHi--; } if (unLo > unHi) break; mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; } AssertD(unHi == unLo-1, "mainQSort3(2)"); if (gtHi < ltLo) { mpush(lo, hi, d + 1); continue; } n = mmin(ltLo-lo, unLo-ltLo); mvswap(ptr, lo, unLo-n, n); m = mmin(hi-gtHi, gtHi-unHi); mvswap(ptr, unLo, hi-m+1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1); if (mnextsize(1) < mnextsize(2)) mnextswap(1, 2); if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1); AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)"); AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)"); mpush(nextLo[0], nextHi[0], nextD[0]); mpush(nextLo[1], nextHi[1], nextD[1]); mpush(nextLo[2], nextHi[2], nextD[2]); }}#undef mpush#undef mpop#undef mnextsize#undef mnextswap#undef MAIN_QSORT_SMALL_THRESH#undef MAIN_QSORT_DEPTH_THRESH#undef MAIN_QSORT_STACK_SIZE/*---------------------------------------------*//* Pre: * nblock > N_OVERSHOOT * block32 exists for [0 .. nblock-1 +N_OVERSHOOT] * ((uint8_t*)block32) [0 .. nblock-1] holds block * ptr exists for [0 .. nblock-1] * * Post: * ((uint8_t*)block32) [0 .. nblock-1] holds block * All other areas of block32 destroyed * ftab[0 .. 65536] destroyed * ptr [0 .. nblock-1] holds sorted order * if (*budget < 0), sorting was abandoned */#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])#define SETMASK (1 << 21)#define CLEARMASK (~(SETMASK))static NOINLINEvoid mainSort(EState* state, uint32_t* ptr, uint8_t* block, uint16_t* quadrant, uint32_t* ftab, int32_t nblock, int32_t* budget){ int32_t i, j, k, ss, sb; uint8_t c1; int32_t numQSorted; uint16_t s; Bool bigDone[256]; /* bbox: moved to EState to save stack int32_t runningOrder[256]; int32_t copyStart[256]; int32_t copyEnd [256]; */#define runningOrder (state->mainSort__runningOrder)#define copyStart (state->mainSort__copyStart)#define copyEnd (state->mainSort__copyEnd) /*-- set up the 2-byte frequency table --*/ /* was: for (i = 65536; i >= 0; i--) ftab[i] = 0; */ memset(ftab, 0, 65537 * sizeof(ftab[0])); j = block[0] << 8; i = nblock - 1;/* 3%, +300 bytes */#if CONFIG_BZIP2_FEATURE_SPEED >= 2 for (; i >= 3; i -= 4) { quadrant[i] = 0; j = (j >> 8) | (((uint16_t)block[i]) << 8); ftab[j]++; quadrant[i-1] = 0; j = (j >> 8) | (((uint16_t)block[i-1]) << 8); ftab[j]++; quadrant[i-2] = 0; j = (j >> 8) | (((uint16_t)block[i-2]) << 8); ftab[j]++; quadrant[i-3] = 0; j = (j >> 8) | (((uint16_t)block[i-3]) << 8); ftab[j]++; }#endif for (; i >= 0; i--) { quadrant[i] = 0; j = (j >> 8) | (((uint16_t)block[i]) << 8); ftab[j]++; } /*-- (emphasises close relationship of block & quadrant) --*/ for (i = 0; i < BZ_N_OVERSHOOT; i++) { block [nblock+i] = block[i]; quadrant[nblock+i] = 0; } /*-- Complete the initial radix sort --*/ j = ftab[0]; /* bbox: optimized */ for (i = 1; i <= 65536; i++) { j += ftab[i]; ftab[i] = j; } s = block[0] << 8; i = nblock - 1;#if CONFIG_BZIP2_FEATURE_SPEED >= 2 for (; i >= 3; i -= 4) { s = (s >> 8) | (block[i] << 8); j = ftab[s] - 1; ftab[s] = j; ptr[j] = i; s = (s >> 8) | (block[i-1] << 8); j = ftab[s] - 1; ftab[s] = j; ptr[j] = i-1; s = (s >> 8) | (block[i-2] << 8); j = ftab[s] - 1; ftab[s] = j; ptr[j] = i-2; s = (s >> 8) | (block[i-3] << 8); j = ftab[s] - 1; ftab[s] = j; ptr[j] = i-3; }#endif for (; i >= 0; i--) { s = (s >> 8) | (block[i] << 8); j = ftab[s] - 1; ftab[s] = j; ptr[j] = i; } /* * Now ftab contains the first loc of every small bucket. * Calculate the running order, from smallest to largest * big bucket. */ for (i = 0; i <= 255; i++) { bigDone [i] = False; runningOrder[i] = i; } { int32_t vv; /* bbox: was: int32_t h = 1; */ /* do h = 3 * h + 1; while (h <= 256); */ uint32_t h = 364; do { /*h = h / 3;*/ h = (h * 171) >> 9; /* bbox: fast h/3 */ for (i = h; i <= 255; i++) { vv = runningOrder[i]; j = i; while (BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv)) { runningOrder[j] = runningOrder[j-h]; j = j - h; if (j <= (h - 1)) goto zero; } zero: runningOrder[j] = vv; } } while (h != 1); } /* * The main sorting loop. */ numQSorted = 0; for (i = 0; i <= 255; i++) { /* * Process big buckets, starting with the least full. * Basically this is a 3-step process in which we call * mainQSort3 to sort the small buckets [ss, j], but * also make a big effort to avoid the calls if we can. */ ss = runningOrder[i]; /* * Step 1: * Complete the big bucket [ss] by quicksorting * any unsorted small buckets [ss, j], for j != ss. * Hopefully previous pointer-scanning phases have already * completed many of the small buckets [ss, j], so * we don't have to sort them at all. */ for (j = 0; j <= 255; j++) { if (j != ss) { sb = (ss << 8) + j; if (!(ftab[sb] & SETMASK)) { int32_t lo = ftab[sb] & CLEARMASK; int32_t hi = (ftab[sb+1] & CLEARMASK) - 1; if (hi > lo) { mainQSort3( ptr, block, quadrant, nblock, lo, hi, BZ_N_RADIX, budget ); if (*budget < 0) return; numQSorted += (hi - lo + 1); } } ftab[sb] |= SETMASK; } } AssertH(!bigDone[ss], 1006); /* * Step 2: * Now scan this big bucket [ss] so as to synthesise the * sorted order for small buckets [t, ss] for all t, * including, magically, the bucket [ss,ss] too. * This will avoid doing Real Work in subsequent Step 1's. */ { for (j = 0; j <= 255; j++) { copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; } for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { k = ptr[j] - 1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[copyStart[c1]++] = k; } for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { k = ptr[j]-1; if (k < 0) k += nblock; c1 = block[k]; if (!bigDone[c1]) ptr[copyEnd[c1]--] = k; } } /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. * Necessity for this case is demonstrated by compressing * a sequence of approximately 48.5 million of character * 251; 1.0.0/1.0.1 will then die here. */ AssertH((copyStart[ss]-1 == copyEnd[ss]) \ || (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007); for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; /* * Step 3: * The [ss] big bucket is now done. Record this fact, * and update the quadrant descriptors. Remember to * update quadrants in the overshoot area too, if * necessary. The "if (i < 255)" test merely skips * this updating for the last bucket processed, since * updating for the last bucket is pointless. * * The quadrant array provides a way to incrementally * cache sort orderings, as they appear, so as to * make subsequent comparisons in fullGtU() complete * faster. For repetitive blocks this makes a big * difference (but not big enough to be able to avoid * the fallback sorting mechanism, exponential radix sort). * * The precise meaning is: at all times: * * for 0 <= i < nblock and 0 <= j <= nblock * * if block[i] != block[j], * * then the relative values of quadrant[i] and * quadrant[j] are meaningless. * * else { * if quadrant[i] < quadrant[j] * then the string starting at i lexicographically * precedes the string starting at j * * else if quadrant[i] > quadrant[j] * then the string starting at j lexicographically * precedes the string starting at i * * else * the relative ordering of the strings starting * at i and j has not yet been determined. * } */ bigDone[ss] = True; if (i < 255) { int32_t bbStart = ftab[ss << 8] & CLEARMASK; int32_t bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; int32_t shifts = 0; while ((bbSize >> shifts) > 65534) shifts++; for (j = bbSize-1; j >= 0; j--) { int32_t a2update = ptr[bbStart + j]; uint16_t qVal = (uint16_t)(j >> shifts); quadrant[a2update] = qVal; if (a2update < BZ_N_OVERSHOOT) quadrant[a2update + nblock] = qVal; } AssertH(((bbSize-1) >> shifts) <= 65535, 1002); } }#undef runningOrder#undef copyStart#undef copyEnd}#undef BIGFREQ#undef SETMASK#undef CLEARMASK/*---------------------------------------------*//* Pre: * nblock > 0 * arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] * ((uint8_t*)arr2)[0 .. nblock-1] holds block * arr1 exists for [0 .. nblock-1] * * Post: * ((uint8_t*)arr2) [0 .. nblock-1] holds block * All other areas of block destroyed * ftab[0 .. 65536] destroyed * arr1[0 .. nblock-1] holds sorted order */static NOINLINEvoid BZ2_blockSort(EState* s){ /* In original bzip2 1.0.4, it's a parameter, but 30 * (which was the default) should work ok. */ enum { wfact = 30 }; uint32_t* ptr = s->ptr; uint8_t* block = s->block; uint32_t* ftab = s->ftab; int32_t nblock = s->nblock; uint16_t* quadrant; int32_t budget; int32_t i; if (nblock < 10000) { fallbackSort(s->arr1, s->arr2, ftab, nblock); } else { /* Calculate the location for quadrant, remembering to get * the alignment right. Assumes that &(block[0]) is at least * 2-byte aligned -- this should be ok since block is really * the first section of arr2. */ i = nblock + BZ_N_OVERSHOOT; if (i & 1) i++; quadrant = (uint16_t*)(&(block[i])); /* (wfact-1) / 3 puts the default-factor-30 * transition point at very roughly the same place as * with v0.1 and v0.9.0. * Not that it particularly matters any more, since the * resulting compressed stream is now the same regardless * of whether or not we use the main sort or fallback sort. */ budget = nblock * ((wfact-1) / 3); mainSort(s, ptr, block, quadrant, ftab, nblock, &budget); if (budget < 0) { fallbackSort(s->arr1, s->arr2, ftab, nblock); } } s->origPtr = -1; for (i = 0; i < s->nblock; i++) if (ptr[i] == 0) { s->origPtr = i; break; }; AssertH(s->origPtr != -1, 1003);}/*-------------------------------------------------------------*//*--- end blocksort.c ---*//*-------------------------------------------------------------*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -