⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaptnlmsdemo.m

📁 自适应滤波器 采用改进的rls算法 LMS 算法
💻 M
字号:
%% Linear Prediction Using the NLMS Adaptive Filter% This demo casts the normalized least mean squares adaptive filter in a linear% prediction framework.  The current sample of a noise corrupted sine wave is% predicted using 32 past samples, i.e., a 32nd order normalized LMS adaptive% filter is applied to the data.%% Note: This demo is equivalent to the Simulink model 'lmsadlp' provided in the% Signal Processing Blockset.% Reference: S. Haykin, "Adaptive Filter Theory", 3rd Edition, Prentice Hall,% N.J., 1996.% Copyright 1999-2005 The MathWorks, Inc. % $Revision: 1.6.4.7 $  $Date: 2005/11/02 03:18:55 $%%% The desired signal is a sine wave of 0.015 cycles/sample and a cosine of 0.008% cycles/sample.N = 500;sig = [sin(2*pi*0.015*(0:N-1)) 0.5*cos(2*pi*0.008*(0:N-1))];plot(0:2*N-1,sig); grid;title('Desired Input to the Adaptive Filter');%%% The input to the adaptive filter is a delayed version of the desired signal% corrupted by white noise of variance 0.5.nvar = 0.5;                   % Noise variancenoise  = nvar*randn(1,2*N);   % Noisen = sig + noise;              % The noise corrupted sine wave.x = [0 n];                    % Delayed input for linear predictiond = [sig 0];                  % Desired signal to the adaptive filterM = 32;                       % NLMS adaptive filter ordermu = 0.2;                     % Normalized LMS step size.plot(0:2*N,x); grid;title('Input to the Adaptive Filter');%%% Create and use the Normalized LMS adaptive filter object% of length M, step size 0.2 and offset 1e-6Hadapt = adaptfilt.nlms(M,mu,1,1e-6);[y,e] = filter(Hadapt,x,d);cla;plot(0:1000,[d' y']);grid on;axis([0 1000 -2 2]);title('Adaptive Linear Prediction');legend('Actual Signal','Predicted Signal');%%% The autocorrelation of the prediction error shows that the input is white% noise.X = xcorr(e(50:end),'coeff');[maxX idx] = max(X);plot(X(idx:end));grid;title('Autocorrelation of the Prediction Error');displayEndOfDemoMessage(mfilename)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -