📄 gaussian_prob.m
字号:
function p = gaussian_prob(x, m, C, use_log)
% GAUSSIAN_PROB Evaluate a multivariate Gaussian density.
% p = gaussian_prob(X, m, C)
% p(i) = N(X(:,i), m, C) where C = covariance matrix and each COLUMN of x is a datavector
% p = gaussian_prob(X, m, C, 1) returns log N(X(:,i), m, C) (to prevents underflow).
%
% If X has size dxN, then p has size Nx1, where N = number of examples
if nargin < 4, use_log = 0; end
if length(m)==1 % scalar
x = x(:)';
end
[d N] = size(x);
%assert(length(m)==d); % slow
m = m(:);
M = m*ones(1,N); % replicate the mean across columns
denom = (2*pi)^(d/2)*sqrt(abs(det(C)));
mahal = sum(((x-M)'*inv(C)).*(x-M)',2); % Chris Bregler's trick
if any(mahal<0)
warning('mahal < 0 => C is not psd')
end
if use_log
p = -0.5*mahal - log(denom);
else
p = exp(-0.5*mahal) / (denom+eps);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -